Files
QD4C-firmware/libraries/zf_device/zf_device_wifi_spi.c
2023-12-11 21:45:06 +08:00

1382 lines
50 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*********************************************************************************************************************
* CH32V307VCT6 Opensourec Library 即CH32V307VCT6 开源库)是一个基于官方 SDK 接口的第三方开源库
* Copyright (c) 2022 SEEKFREE 逐飞科技
*
* 本文件是CH32V307VCT6 开源库的一部分
*
* CH32V307VCT6 开源库 是免费软件
* 您可以根据自由软件基金会发布的 GPLGNU General Public License即 GNU通用公共许可证的条款
* 即 GPL 的第3版即 GPL3.0)或(您选择的)任何后来的版本,重新发布和/或修改它
*
* 本开源库的发布是希望它能发挥作用,但并未对其作任何的保证
* 甚至没有隐含的适销性或适合特定用途的保证
* 更多细节请参见 GPL
*
* 您应该在收到本开源库的同时收到一份 GPL 的副本
* 如果没有,请参阅<https://www.gnu.org/licenses/>
*
* 额外注明:
* 本开源库使用 GPL3.0 开源许可证协议 以上许可申明为译文版本
* 许可申明英文版在 libraries/doc 文件夹下的 GPL3_permission_statement.txt 文件中
* 许可证副本在 libraries 文件夹下 即该文件夹下的 LICENSE 文件
* 欢迎各位使用并传播本程序 但修改内容时必须保留逐飞科技的版权声明(即本声明)
*
* 文件名称 zf_device_wifi_spi
* 公司名称 成都逐飞科技有限公司
* 版本信息 查看 libraries/doc 文件夹内 version 文件 版本说明
* 开发环境 MounRiver Studio V1.8.1
* 适用平台 CH32V307VCT6
* 店铺链接 https://seekfree.taobao.com/
*
* 修改记录
* 日期 作者 备注
* 2023-05-25 大W first version
********************************************************************************************************************/
/*********************************************************************************************************************
* 接线定义:
* ------------------------------------
* 模块管脚 单片机管脚
* RST 查看 zf_device_wifi_spi.h 中 WIFI_SPI_RST_PIN 宏定义
* INT 查看 zf_device_wifi_spi.h 中 WIFI_SPI_INT_PIN 宏定义
* CS 查看 zf_device_wifi_spi.h 中 WIFI_SPI_CS_PIN 宏定义
* MISO 查看 zf_device_wifi_spi.h 中 WIFI_SPI_MISO_PIN 宏定义
* SCK 查看 zf_device_wifi_spi.h 中 WIFI_SPI_SCK_PIN 宏定义
* MOSI 查看 zf_device_wifi_spi.h 中 WIFI_SPI_MOSI_PIN 宏定义
* 5V 5V 电源
* GND 电源地
* 其余引脚悬空
* ------------------------------------
*********************************************************************************************************************/
#include "stdio.h"
#include "zf_common_clock.h"
#include "zf_common_debug.h"
#include "zf_common_fifo.h"
#include "zf_common_function.h"
#include "zf_driver_delay.h"
#include "zf_driver_gpio.h"
#include "zf_common_interrupt.h"
#include "zf_driver_exti.h"
#include "zf_driver_spi.h"
#include "zf_device_type.h"
#include "zf_device_wifi_spi.h"
#define WAIT_TIME_OUT (10000) // 单指令等待时间 单位ms
#define WIFI_SPI_WRITE_MAX 4092 // 定义一次SPI通讯最大发送的数据长度
#define WIFI_SPI_WRITE_REQUEST 0x01
#define WIFI_SPI_CHECK_STATE 0x02
#define WIFI_SPI_WRITE_DATA 0x03
#define WIFI_SPI_READ_DATA 0x04
#define WIFI_SPI_WRITE_END 0x07
#define WIFI_SPI_READ_END 0x08
#define WIFI_SPI_WRITE_ADDR 0x00
#define WIFI_SPI_STATE_ADDR 0x04
volatile wifi_spi_buffer_state_enum wifi_buffer_state;
volatile wifi_spi_transmit_state_enum wifi_transmit_state;
static fifo_struct wifi_spi_fifo;
static uint8 wifi_spi_buffer[WIFI_SPI_BUFFER_SIZE]; // 数据存放数组
vuint8 wifi_spi_ack_flag = 0; // 0模块未应答 1模块已应答
uint8 wifi_spi_init_flag; // 0模块未初始化成功或者未连接 1模块已连接并成功初始化
vuint8 wifi_spi_packet_num; // 发送的数据包ID
vuint32 wifi_spi_send_remain_length; // 剩余的发送长度
uint8 wifi_spi_receive_buffer[WIFI_SPI_WRITE_MAX];
wifi_spi_information_struct wifi_spi_information;
//-------------------------------------------------------------------------------------------------------------------
// @brief 请求写入数据到模块
// @param length 需要写入的长度
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static void wifi_spi_write_request(uint16 length)
{
wifi_spi_buffer_struct head;
head.cmd = WIFI_SPI_WRITE_REQUEST;
head.addr = WIFI_SPI_WRITE_ADDR;
head.dummy = 0x00;
head.magic = 0xFE;
head.sequence = wifi_spi_packet_num++;
head.length = length;
wifi_transmit_state = TRANSMIT_WRITE_REQUEST;
gpio_set_level(WIFI_SPI_CS_PIN, 0);
spi_write_8bit_array(WIFI_SPI_INDEX, (const uint8 *)&head.cmd, 7);
gpio_set_level(WIFI_SPI_CS_PIN, 1);
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 读取模块状态
// @param *length 需要读取或者写入的长度
// @return WIFI_SPI_BUFFER_STATE_enum 模块状态
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static wifi_spi_buffer_state_enum wifi_spi_read_state(uint16 *length)
{
wifi_spi_buffer_struct head = {0};
head.cmd = WIFI_SPI_CHECK_STATE;
head.addr = WIFI_SPI_STATE_ADDR;
head.dummy = 0x00;
wifi_spi_ack_flag = 0;
wifi_transmit_state = TRANSMIT_READ_STATE;
gpio_set_level(WIFI_SPI_CS_PIN, 0);
spi_transfer_8bit(WIFI_SPI_INDEX, (const uint8 *)&head.cmd, &head.cmd, 7);
gpio_set_level(WIFI_SPI_CS_PIN, 1);
if(BUFFER_WRITE == head.magic)
{
wifi_spi_packet_num = head.sequence;
}
*length = head.length;
return (wifi_spi_buffer_state_enum)head.magic;
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 数据发送完成
// @param void
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static void wifi_spi_send_done(void)
{
wifi_spi_buffer_struct head;
head.cmd = WIFI_SPI_WRITE_END;
head.addr = WIFI_SPI_WRITE_ADDR;
head.dummy = 0x00;
gpio_set_level(WIFI_SPI_CS_PIN, 0);
spi_write_8bit_array(WIFI_SPI_INDEX, (const uint8 *)&head.cmd, 3);
gpio_set_level(WIFI_SPI_CS_PIN, 1);
wifi_transmit_state = TRANSMIT_IDLE;
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 数据接收完成
// @param void
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static void wifi_spi_receive_done(void)
{
wifi_spi_buffer_struct head;
head.cmd = WIFI_SPI_READ_END;
head.addr = WIFI_SPI_WRITE_ADDR;
head.dummy = 0x00;
gpio_set_level(WIFI_SPI_CS_PIN, 0);
spi_write_8bit_array(WIFI_SPI_INDEX, (const uint8 *)&head.cmd, 3);
gpio_set_level(WIFI_SPI_CS_PIN, 1);
wifi_transmit_state = TRANSMIT_IDLE;
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 发送数据到模块
// @param *buff 需要写入数据的首地址
// @param length 需要写入数据的长度
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static void wifi_spi_send_data(const uint8 *buff, uint16 length)
{
wifi_spi_buffer_struct head;
head.cmd = WIFI_SPI_WRITE_DATA;
head.addr = WIFI_SPI_WRITE_ADDR;
head.dummy = 0x00;
wifi_transmit_state = TRANSMIT_WRITE;
gpio_set_level(WIFI_SPI_CS_PIN, 0);
spi_write_8bit_array(WIFI_SPI_INDEX, (const uint8 *)&head.cmd, 3);
spi_write_8bit_array(WIFI_SPI_INDEX, buff, length);
gpio_set_level(WIFI_SPI_CS_PIN, 1);
wifi_spi_send_done();
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 发送数据到模块(多个源地址)
// @param *multi_buffer 多个源地址以及每个源地址需要发送的长度
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static void wifi_spi_send_data_multi(wifi_spi_send_multi_struct *multi_buffer)
{
uint8 i;
wifi_spi_buffer_struct head;
head.cmd = WIFI_SPI_WRITE_DATA;
head.addr = WIFI_SPI_WRITE_ADDR;
head.dummy = 0x00;
wifi_transmit_state = TRANSMIT_WRITE;
gpio_set_level(WIFI_SPI_CS_PIN, 0);
spi_write_8bit_array(WIFI_SPI_INDEX, (const uint8 *)&head.cmd, 3);
for(i = 0; i < WIFI_SPI_MAX_MULTI; i++)
{
if(NULL != multi_buffer->source[i]) spi_write_8bit_array(WIFI_SPI_INDEX, multi_buffer->source[i], multi_buffer->length[i]);
}
gpio_set_level(WIFI_SPI_CS_PIN, 1);
wifi_spi_send_done();
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 接收模块发送的数据
// @param *buff 接收数组的缓冲区首地址
// @param length 需要接收的长度
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static void wifi_spi_receive_data(uint8 *buff, uint16 length)
{
wifi_spi_buffer_struct head;
head.cmd = WIFI_SPI_READ_DATA;
head.addr = WIFI_SPI_WRITE_ADDR;
head.dummy = 0x00;
wifi_transmit_state = TRANSMIT_READ;
gpio_set_level(WIFI_SPI_CS_PIN, 0);
spi_transfer_8bit(WIFI_SPI_INDEX, (const uint8 *)&head.cmd, &head.cmd, 3);
spi_transfer_8bit(WIFI_SPI_INDEX, (const uint8 *)buff, buff, length);
gpio_set_level(WIFI_SPI_CS_PIN, 1);
wifi_spi_receive_done();
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 发送命令到模块
// @param *str 命令字符串首地址
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
static void wifi_spi_send_command(const char *str)
{
uint8 state = 0;
uint16 send_length;
uint16 wait_time = 0;
// 请求发送数据
send_length = (uint16)strlen(str);
// 等待传输进入空闲
while(TRANSMIT_IDLE != wifi_transmit_state);
// 如果没有进入发送状态则重新请求发送数据
while(BUFFER_WRITE != wifi_buffer_state)
{
wifi_spi_ack_flag = 0;
wifi_spi_write_request(send_length);
while(!wifi_spi_ack_flag)
{
wait_time++;
if((WAIT_TIME_OUT / 4) <= wait_time)
{
state = 1;
wifi_spi_init_flag = 0; // 模块已断开
break;
}
system_delay_ms(1);
}
if(1 == state)
{
break;
}
}
wifi_buffer_state = BUFFER_IDLE;
if(0 == state) // 通讯未超时
{
wifi_spi_send_remain_length = send_length;
// 发送消息
wifi_spi_send_data((const uint8 *)str, send_length);
}
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 检查模块状态并读取模块发送的数据
// @param void
// @return void
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
void wifi_spi_check_state_read_buffer(void)
{
uint16 wifi_spi_receive_length; // 本次接收到的数据数量
// 查询WIFI模块的状态
wifi_buffer_state = wifi_spi_read_state(&wifi_spi_receive_length);
// 如果需要读取WIFI模块数据则保存需要读取的长度
if(BUFFER_READ == wifi_buffer_state)
{
wifi_spi_receive_data((uint8 *)wifi_spi_receive_buffer, wifi_spi_receive_length);
fifo_write_buffer(&wifi_spi_fifo, wifi_spi_receive_buffer, wifi_spi_receive_length); // 存入 FIFO
}
else if(BUFFER_IDLE == wifi_buffer_state)
{
// 如果模块内部缓冲区状态为空闲,则传输状态也设置为空闲
wifi_transmit_state = TRANSMIT_IDLE;
}
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 发送数据到模块
// @param *buff 需要发送的数据首地址
// @param length 需要发送的长度
// @return uint32 剩余未发送长度
// Sample usage:
//-------------------------------------------------------------------------------------------------------------------
uint32 wifi_spi_write_data(const uint8 *buff, uint32 length)
{
uint16 send_length;
uint32 wait_time;
// 记录需要发送的长度
wifi_spi_send_remain_length = length;
while(wifi_spi_send_remain_length)
{
send_length = (uint16)func_limit_ab(wifi_spi_send_remain_length, 1, WIFI_SPI_WRITE_MAX);
// 请求发送数据
wifi_spi_ack_flag = 0;
wifi_spi_write_request(send_length);
// 最长等待5秒
wait_time = 5000;
while(!wifi_spi_ack_flag)
{
wait_time--;
if(0 == wait_time) break;
system_delay_ms(1);
}
if(BUFFER_WRITE == wifi_buffer_state)
{
// 发送消息
wifi_spi_send_data(buff, send_length);
buff += send_length;
wifi_spi_send_remain_length -= send_length;
wifi_buffer_state = BUFFER_IDLE;
}
else
{
break;
}
}
return wifi_spi_send_remain_length;
}
//-------------------------------------------------------------------------------------------------------------------
// @brief 发送数据到模块(多个源地址)
// @param *multi_buffer 多个源地址以及每个源地址需要发送的长度
// @return uint32 剩余未发送长度
// Sample usage: 发送数据总长度不能超过4092个
//-------------------------------------------------------------------------------------------------------------------
uint32 wifi_spi_write_data_multi(wifi_spi_send_multi_struct *multi_buffer)
{
uint16 send_length;
uint32 wait_time;
// 记录需要发送的长度
send_length = multi_buffer->length[0] + multi_buffer->length[1] + multi_buffer->length[2] + multi_buffer->length[3] + multi_buffer->length[4] + multi_buffer->length[5] + multi_buffer->length[6] + multi_buffer->length[7];
if(WIFI_SPI_WRITE_MAX >= send_length)
{
// 请求发送数据
wifi_spi_ack_flag = 0;
wifi_spi_write_request(send_length);
// 最长等待5秒
wait_time = 5000;
while(!wifi_spi_ack_flag)
{
wait_time--;
if(0 == wait_time) break;
system_delay_ms(1);
}
if(BUFFER_WRITE == wifi_buffer_state)
{
// 发送消息
wifi_spi_send_data_multi(multi_buffer);
send_length = 0;
wifi_buffer_state = BUFFER_IDLE;
}
}
return send_length;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 等待模块响应
// 参数说明 *wait_buffer 等待的响应的字符串
// 参数说明 timeout 超时时间
// 返回参数 uint8 0模块响应指定数据 1模块未响应指定数据或超时
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_wait_ack (char *wait_buffer, uint32 timeout)
{
uint8 return_state = 1;
char receiver_buffer[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint32 receiver_len = 8;
do
{
system_delay_ms(1);
// 判断接收缓冲区内是否有需要响应的指定数据 如果有 则跳出循环并且返回0
receiver_len = 8;
fifo_read_tail_buffer(&wifi_spi_fifo, (uint8 *)receiver_buffer, &receiver_len, FIFO_READ_ONLY);
if(strstr(receiver_buffer, wait_buffer))
{
return_state = 0;
break;
}
else if(strstr(receiver_buffer, "ERROR") || strstr(receiver_buffer, "busy"))
{
// 如果接收到报错或者模块忙 则跳出循环并且返回1
return_state = 1;
break;
}
}while(timeout --);
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 清除WiFi接收缓冲区内容
// 参数说明 void
// 返回参数 void
// 使用示例 wifi_spi_clear_receive_buffer();
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static void wifi_spi_clear_receive_buffer (void)
{
// 清空WiFi接收缓冲区
fifo_clear(&wifi_spi_fifo);
}
//--------------------------------------------------------------------------------------------------
// 函数简介 模块数据解析
// 参数说明 *target_buffer 目标存放地址指针 字符串数组
// 参数说明 *origin_buffer 数据来源地址指针 字符串数组
// 参数说明 start_char 起始提取字节 例如从 "1234" 中从 '2' 开始提取 就应该填入 '2'
// 参数说明 end_char 结束提取字节 例如从 "1234" 中在 '4' 结束提取 就应该填入 '\0'(0x00 空字符 一般是字符串结尾)
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_data_parse(wifi_spi_information.mac, wifi_spi_receive_buffer, '"', '"'); // 调用获取本机mac地址后调用此函数提取mac地址
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_data_parse (uint8 *target_buffer, uint8 *origin_buffer, char start_char, char end_char)
{
uint8 return_state = 0;
char *location1;
char *location2;
location1 = strchr((char *)origin_buffer, start_char);
if(location1)
{
location1 ++;
location2 = strchr(location1, end_char);
if(location2)
{
memcpy(target_buffer, location1, location2-location1);
}
else
{
return_state = 1;
}
}
else
{
return_state = 1;
}
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 查看模块版本信息
// 参数说明 void
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_get_version();
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_get_version (void)
{
char *location1;
uint8 return_state = 0;
uint8 receiver_buffer[256];
uint32 receiver_len = 256;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_send_command("AT+GMR\r\n");
do
{
if(wifi_spi_wait_ack("OK", WAIT_TIME_OUT))
{
return_state = 1;
break;
}
fifo_read_buffer(&wifi_spi_fifo, receiver_buffer, &receiver_len, FIFO_READ_ONLY);
location1 = strrchr((char *)receiver_buffer, ':');
if(wifi_spi_data_parse(wifi_spi_information.version, (uint8 *)location1, ':', '('))
{
return_state = 1;
break;
}
}while(0);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 模块回显设置
// 参数说明 model 0:关闭模块的回写功能 其他:开启模块回写
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_echo_set("1");//开启模块回写功能
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_echo_set (char *model)
{
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
if('1' == *model)
{
wifi_spi_send_command("ATE1\r\n");
}
else
{
wifi_spi_send_command("ATE0\r\n");
}
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 查询模块自身 的 MAC 地址
// 参数说明 void
// 返回参数 uint8 0成功 1失败
// 使用示例 if(wifi_spi_get_mac()){}
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_get_mac (void)
{
uint8 return_state = 0;
uint8 receiver_buffer[64];
uint32 receiver_len = 64;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_send_command("AT+CIPAPMAC?\r\n");
do
{
if(wifi_spi_wait_ack("OK", WAIT_TIME_OUT))
{
return_state = 1;
break;
}
fifo_read_buffer(&wifi_spi_fifo, receiver_buffer, &receiver_len, FIFO_READ_ONLY);
if(wifi_spi_data_parse(wifi_spi_information.mac, receiver_buffer, '"', '"'))
{
return_state = 1;
break;
}
}while(0);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 查询模块或者目标WIFI 的 IP 地址(取决于模块当前的工作模式)
// 参数说明 void
// 返回参数 uint8 0成功 1失败
// 使用示例 if(wifi_spi_get_ip()){}
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_get_ip (void)
{
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
if(WIFI_SPI_STATION == wifi_spi_information.mode)
{
wifi_spi_send_command("AT+CIPSTA?\r\n");
}
else if(WIFI_SPI_SOFTAP == wifi_spi_information.mode)
{
wifi_spi_send_command("AT+CIPAP?\r\n");
}
do
{
if(wifi_spi_wait_ack("OK", WAIT_TIME_OUT))
{
return_state = 1;
break;
}
uint8 receiver_buffer[128];
uint32 receiver_len = 128;
fifo_read_buffer(&wifi_spi_fifo, receiver_buffer, &receiver_len, FIFO_READ_ONLY);
if(wifi_spi_data_parse(wifi_spi_information.local_ip, receiver_buffer, '"', '"'))
{
return_state = 1;
break;
}
}while(0);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 查询模块的相关信息
// 参数说明 void
// 返回参数 uint8 0成功 1失败
// 使用示例 if(wifi_spi_get_information()){}
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_get_information (void)
{
uint8 return_state = 0;
do
{
// 获取模块版本号
if(wifi_spi_get_version())
{
return_state = 1;
break;
}
// 获取模块IP地址
if(wifi_spi_get_ip())
{
return_state = 1;
break;
}
// 获取模块MAC信息
if(wifi_spi_get_mac())
{
return_state = 1;
break;
}
memcpy(wifi_spi_information.local_port, "no port", 7);
}while(0);
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 连接 WiFi
// 参数说明 wifi_ssid WiFi名称
// 参数说明 pass_word WiFi密码
// 参数说明 model 0:查询WiFi连接情况 其他连接WiFi
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_get_or_connect_wifi("WiFi_name", "Pass_word", 1);
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_set_wifi (char *wifi_ssid, char *pass_word)
{
char temp[64];
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
if(WIFI_SPI_SOFTAP == wifi_spi_information.mode)
{
sprintf(temp, "AT+CWSAP=\"%s\",\"%s\",5,3\r\n", wifi_ssid, pass_word);
wifi_spi_send_command(temp);
}
else
{
sprintf(temp, "AT+CWJAP=\"%s\",\"%s\"\r\n", wifi_ssid, pass_word);
wifi_spi_send_command(temp);
}
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 上电是否自动连接WiFi
// 参数说明 model 0:上电不自动连接wifi 其他上电自动连接wifi
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_auto_connect_wifi(0); //上电不自动连接wifi
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_auto_connect_wifi (char *model)
{
char temp[64];
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
sprintf(temp, "AT+CWAUTOCONN=%s\r\n", model);
wifi_spi_send_command(temp);
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 设置连接模式
// 参数说明 model 0: 单连接模式 1多连接模式
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_set_connect_model("1");
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_set_connect_model (char *model)
{
char temp[64];
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
sprintf(temp, "AT+CIPMUX=%s\r\n", model);
wifi_spi_send_command(temp);
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 设置传输模式
// 参数说明 model 0: 普通传输模式 IP断开后不重新连接
// 1: Wi-Fi 透传接收模式,仅支持 TCP 单连接、UDP 固定通信对端、SSL 单连接的情况 IP断开后会不断尝试重新连接
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_set_transfer_model("1");
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
static uint8 wifi_spi_set_transfer_model (char *model)
{
char temp[64];
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
sprintf(temp, "AT+CIPMODE=%s\r\n", model);
wifi_spi_send_command(temp);
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 设置模块模式 (Station/SoftAP/Station+SoftAP)
// 参数说明 state 0:无 Wi-Fi 模式,并且关闭 Wi-Fi RF----1: Station 模式----2: SoftAP 模式----3: SoftAP+Station 模式
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_set_model("1");
// 备注信息
//--------------------------------------------------------------------------------------------------
uint8 wifi_spi_set_model (wifi_spi_mode_enum mode)
{
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
if(WIFI_SPI_SOFTAP == mode)
{
wifi_spi_send_command("AT+CWMODE=2\r\n");
}
else
{
wifi_spi_send_command("AT+CWMODE=1\r\n");
}
// 设置模块工作模式
wifi_spi_information.mode = mode;
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 断开与wifi的连接
// 参数说明 void
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_disconnected_wifi();
// 备注信息
//--------------------------------------------------------------------------------------------------
uint8 wifi_spi_disconnected_wifi (void)
{
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_send_command("AT+CWQAP\r\n");
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 进入打开透传模式
// 参数说明 void
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_entry_serianet();
// 备注信息
//--------------------------------------------------------------------------------------------------
uint8 wifi_spi_entry_serianet (void)
{
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_send_command("AT+CIPSEND\r\n");
return_state = wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 退出透传模式
// 参数说明 model 0:关闭透传模式 其他:开启透传模式
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_exit_serianet(1);
// 备注信息
//--------------------------------------------------------------------------------------------------
uint8 wifi_spi_exit_serianet (void)
{
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
system_delay_ms(20);
wifi_spi_send_command("+++");
system_delay_ms(1000);
return 0;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 建立TCP连接
// 参数说明 ip 远端 IPv4 地址、IPv6 地址,或域名
// 参数说明 port 远端端口值
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_connect_tcp_servers("192.168.101.110", "8080");
// 备注信息 如果总是连接不上电脑的TCP服务器 可以尝试使用网线连接电脑
// 如果是使用WiFi连接 可能会导致模块连接TCP服务器等待较长时间
//--------------------------------------------------------------------------------------------------
uint8 wifi_spi_connect_tcp_servers (char *ip, char *port, wifi_spi_transfer_mode_enum mode)
{
char temp[64];
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
do
{
if(wifi_spi_set_connect_model("0"))
{
return_state = 1;
break;
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
sprintf(temp, "AT+CIPSTARTEX=\"TCP\",\"%s\",%s\r\n", ip, port);
wifi_spi_send_command(temp);
if(wifi_spi_wait_ack("OK", WAIT_TIME_OUT))
{
return_state = 1;
wifi_spi_information.connect_state = WIFI_SPI_SERVER_OFF;
break;
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
// 设置传输模式
if(wifi_spi_set_transfer_model(WIFI_SPI_COMMAND == mode ? "0" : "1"))
{
return_state = 1;
break;
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_send_command("AT+CIPSTATE?\r\n");
if(wifi_spi_wait_ack("OK", WAIT_TIME_OUT))
{
return_state = 1;
break;
}
else
{
uint8 receiver_buffer[128];
uint32 receiver_len = 128;
fifo_read_buffer(&wifi_spi_fifo, receiver_buffer, &receiver_len, FIFO_READ_ONLY);
char* buffer_index = (char *)receiver_buffer;
char* end_index;
buffer_index += 22;
buffer_index += strlen(ip);
buffer_index += strlen(port);
end_index = strchr(buffer_index, ',');
memcpy(wifi_spi_information.local_port, " ", 7);
memcpy(wifi_spi_information.local_port, buffer_index, (end_index - buffer_index));
}
wifi_spi_information.connect_state = WIFI_SPI_SERVER_ON;
wifi_spi_information.connect_mode = WIFI_SPI_TCP_CLIENT;
wifi_spi_information.transfer_mode = mode;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
if(WIFI_SPI_SERIANET == mode) // 透传模式下直接开启透传
{
if(wifi_spi_entry_serianet())
{
return_state = 1;
break;
}
}
}while(0);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 建立UDP连接
// 参数说明 *ip 远端 IPv4 地址、IPv6 地址 或域名 字符串形式
// 参数说明 *port 远端端口值 字符串形式
// 参数说明 *local_port 远端 IPv4 地址、IPv6 地址 或域名 字符串形式
// 参数说明 mode 模块数据通信模式
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_connect_udp_client("192.168.101.110", "8080", "8080", WIFI_SPI_COMMAND);
// 备注信息 自动分配ID
//--------------------------------------------------------------------------------------------------
uint8 wifi_spi_connect_udp_client (char *ip, char *port, char *local_port, wifi_spi_transfer_mode_enum mode)
{
char temp[64];
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
do
{
if(wifi_spi_set_connect_model("0"))
{
return_state = 1;
break;
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
sprintf(temp, "AT+CIPSTARTEX=\"UDP\",\"%s\",%s,%s\r\n", ip, port, local_port);
wifi_spi_send_command(temp);
if(wifi_spi_wait_ack("OK", WAIT_TIME_OUT))
{
return_state = 1;
wifi_spi_information.connect_state = WIFI_SPI_SERVER_OFF;
break;
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
if(wifi_spi_set_transfer_model(WIFI_SPI_COMMAND == mode ? "0" : "1")) // 设置传输模式
{
return_state = 1;
break;
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
if(WIFI_SPI_SERIANET == mode) // 透传模式下直接开启透传
{
if(wifi_spi_entry_serianet())
{
return_state = 1;
break;
}
}
memcpy(wifi_spi_information.local_port, " ", 7);
memcpy(wifi_spi_information.local_port, local_port, strlen(local_port));
wifi_spi_information.connect_state = WIFI_SPI_SERVER_ON;
wifi_spi_information.connect_mode = WIFI_SPI_UDP_CLIENT;
wifi_spi_information.transfer_mode = mode;
}while(0);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 断开连接 TCP Server 使用本接口将会断开所有连接
// 参数说明 void
// 返回参数 uint8 0成功 1失败
// 使用示例 wifi_spi_disconnect_link();
// 备注信息
//--------------------------------------------------------------------------------------------------
uint8 wifi_spi_disconnect_link (void)
{
uint8 return_state = 0;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
do
{
if(WIFI_SPI_TCP_SERVER == wifi_spi_information.connect_mode)
{
wifi_spi_send_command("AT+CIPCLOSE=5\r\n");
}
else
{
wifi_spi_send_command("AT+CIPCLOSE\r\n");
}
if(wifi_spi_wait_ack("OK", WAIT_TIME_OUT))
{
return_state = 1;
wifi_spi_information.connect_state = WIFI_SPI_SERVER_OFF;
break;
}
}while(0);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
return return_state;
}
//-------------------------------------------------------------------------------------------------------------------
// 函数简介 WiFi模块 发送字节函数
// 参数说明 data 需要发送的数据
// 返回参数 uint32 剩余未发送数据长度
// 使用示例 wifi_spi_send_byte(0xa5);
// 备注信息 当模块作为TCP服务器时发送数据函数默认将数据发送至第一个连接模块的客户端
//-------------------------------------------------------------------------------------------------------------------
uint32 wifi_spi_send_byte (uint8 data)
{
char temp[64];
uint8 temp_length;
uint16 send_length;
send_length = 1;
if(wifi_spi_init_flag)
{
if(WIFI_SPI_SERVER_ON == wifi_spi_information.connect_state)
{
if(WIFI_SPI_COMMAND == wifi_spi_information.transfer_mode)
{
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
temp_length = (uint8)sprintf(temp, "AT+CIPSEND=");
if(WIFI_SPI_TCP_SERVER == wifi_spi_information.connect_mode)
{
temp_length += sprintf(&temp[temp_length], "0,");
}
temp_length += sprintf(&temp[temp_length], "%u\r\n", send_length);
wifi_spi_send_command(temp);
if(0 == wifi_spi_wait_ack("OK", WAIT_TIME_OUT)) // 等待模块响应
{
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_write_data(&data, send_length);
wifi_spi_wait_ack("bytes", 50);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
}
else
{
send_length = (uint16)wifi_spi_write_data(&data, send_length);
}
}
}
return send_length;
}
//-------------------------------------------------------------------------------------------------------------------
// 函数简介 WiFi模块 发送缓冲区函数
// 参数说明 buff 需要发送的数据地址
// 参数说明 len 发送长度
// 返回参数 uint32 剩余未发送数据长度
// 使用示例 wifi_spi_send_buffer("123", 3);
// 备注信息 当模块作为TCP服务器时发送数据函数默认将数据发送至第一个连接模块的客户端
//-------------------------------------------------------------------------------------------------------------------
uint32 wifi_spi_send_buffer (const uint8 *buff, uint32 len)
{
char temp[64];
uint8 temp_length;
uint16 send_length;
if(wifi_spi_init_flag)
{
if(WIFI_SPI_SERVER_ON == wifi_spi_information.connect_state)
{
if(WIFI_SPI_COMMAND == wifi_spi_information.transfer_mode)
{
while(len)
{
if((WIFI_SPI_WRITE_MAX * 2) < len) send_length = WIFI_SPI_WRITE_MAX * 2;
else
{
send_length = (uint16)len;
}
len -= send_length;
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
temp_length = (uint8)sprintf(temp, "AT+CIPSEND=");
if(WIFI_SPI_TCP_SERVER == wifi_spi_information.connect_mode)
{
temp_length += sprintf(&temp[temp_length], "0,");
}
temp_length += sprintf(&temp[temp_length], "%u\r\n", send_length);
wifi_spi_send_command(temp);
if(0 == wifi_spi_wait_ack("OK", WAIT_TIME_OUT)) // 等待模块响应
{
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_write_data(buff, send_length);
wifi_spi_wait_ack("bytes", 50);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
}
buff += send_length;
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
}
else
{
len = wifi_spi_write_data(buff, len);
}
}
}
return len;
}
//-------------------------------------------------------------------------------------------------------------------
// 函数简介 WiFi模块 发送缓冲区函数(多个源地址)
// @param *multi_buffer 多个源地址以及每个源地址需要发送的长度
// 返回参数 uint32 剩余未发送数据长度
// 使用示例
// 备注信息 需要发送多个数组时采用此函数可以极大的降低通讯时间发送数据总长度不能超过4092
//-------------------------------------------------------------------------------------------------------------------
uint32 wifi_spi_send_buffer_multi (wifi_spi_send_multi_struct *multi_buffer)
{
uint8 i;
uint16 remain_length;
if(wifi_spi_init_flag)
{
if(WIFI_SPI_SERVER_ON == wifi_spi_information.connect_state)
{
if(WIFI_SPI_COMMAND == wifi_spi_information.transfer_mode)
{
for(i = 0; i < WIFI_SPI_MAX_MULTI; i++)
{
if(multi_buffer->source[i]) wifi_spi_send_buffer(multi_buffer->source[i], multi_buffer->length[i]);
}
}
else
{
remain_length = (uint16)wifi_spi_write_data_multi(multi_buffer);
}
}
}
return remain_length;
}
//-------------------------------------------------------------------------------------------------------------------
// 函数简介 WiFi模块 发送字符串函数
// 参数说明 *str 需要发送的数据
// 返回参数 uint32 剩余未发送数据长度
// 使用示例 wifi_spi_send_string("123");
// 备注信息 当模块作为TCP服务器时发送数据函数默认将数据发送至第一个连接模块的客户端
//-------------------------------------------------------------------------------------------------------------------
uint32 wifi_spi_send_string (const char *str)
{
char temp[64];
uint8 temp_length;
uint16 send_length;
send_length = (uint16)strlen(str);
if(wifi_spi_init_flag)
{
if(WIFI_SPI_SERVER_ON == wifi_spi_information.connect_state)
{
if(WIFI_SPI_COMMAND == wifi_spi_information.transfer_mode)
{
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
temp_length = (uint8)sprintf(temp, "AT+CIPSEND=");
if(WIFI_SPI_TCP_SERVER == wifi_spi_information.connect_mode)
{
temp_length += sprintf(&temp[temp_length], "0,");
}
temp_length += sprintf(&temp[temp_length], "%u\r\n", send_length);
wifi_spi_send_command(temp);
if(0 == wifi_spi_wait_ack("OK", WAIT_TIME_OUT)) // 等待模块响应
{
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_write_data((uint8 *)str, send_length);
wifi_spi_wait_ack("bytes", 50);
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
wifi_spi_wait_ack("OK", WAIT_TIME_OUT);
}
wifi_spi_clear_receive_buffer(); // 清空WiFi接收缓冲区
}
else
{
send_length = (uint16)wifi_spi_write_data((uint8 *)str, send_length);
}
}
}
return send_length;
}
//-------------------------------------------------------------------------------------------------------------------
// 函数简介 WiFi 模块数据接收函数
// 参数说明 buffer 接收数据的存放地址
// 参数说明 len 数组长度可直接填写或者使用sizeof求得
// 返回参数 uint32 返回实际接收到的数据长度
// 使用示例 uint8 test_buffer[256]; wifi_spi_read_buffer(&test_buffer[0], sizeof(test_buffer));
// 备注信息
//-------------------------------------------------------------------------------------------------------------------
uint32 wifi_spi_read_buffer (uint8 *buffer, uint32 len)
{
fifo_read_buffer(&wifi_spi_fifo, buffer, &len, FIFO_READ_AND_CLEAN);
return len;
}
//--------------------------------------------------------------------------------------------------
// 函数简介 wifi spi handshake中断回调函数
// 参数说明 void
// 返回参数 void
// 备注信息 内部调用
//--------------------------------------------------------------------------------------------------
void wifi_spi_callback (void)
{
wifi_spi_check_state_read_buffer();
wifi_spi_ack_flag = 1; // ACK标志位置1
}
//-------------------------------------------------------------------------------------------------------------------
// 函数简介 WiFi 模块初始化
// 参数说明 *wifi_ssid 目标连接的 WiFi 的名称 字符串形式
// 参数说明 *pass_word 目标连接的 WiFi 的密码 字符串形式
// 参数说明 wifi_mode 模块的工作模式 参照 zf_device_wireless_spi.h 中 wifi_spi_mode_enum 枚举
// 返回参数 uint8 模块初始化状态 0-成功 1-错误
// 使用示例 wifi_spi_init("SEEKFREE_2.4G", "SEEKFREEV2", WIFI_UART_STATION);
// 备注信息 初始化会首先设置串口配置,之后会对模块进行基本参数配置
// 具体的配置信息可以在 zf_device_wireless_spi.h 文件中修改
//-------------------------------------------------------------------------------------------------------------------
uint8 wifi_spi_init (char *wifi_ssid, char *pass_word, wifi_spi_mode_enum wifi_mode)
{
uint8 return_state = 0;
uint32 temp_isr;
spi_init(WIFI_SPI_INDEX, SPI_MODE0, WIFI_SPI_SPEED, WIFI_SPI_SCK_PIN, WIFI_SPI_MOSI_PIN, WIFI_SPI_MISO_PIN, SPI_CS_NULL);//硬件SPI初始化
set_wireless_type(WIFI_SPI, wifi_spi_callback);
fifo_init(&wifi_spi_fifo, FIFO_DATA_8BIT, wifi_spi_buffer, WIFI_SPI_BUFFER_SIZE);
gpio_init(WIFI_SPI_CS_PIN, GPO, 1, GPO_PUSH_PULL);
gpio_init(WIFI_SPI_RST_PIN, GPO, 1, GPO_PUSH_PULL);
temp_isr = interrupt_global_disable();
exti_init(WIFI_SPI_INT_PIN, EXTI_TRIGGER_RISING);
interrupt_set_priority(EXTI1_IRQn, (0<<5) || 1);
gpio_set_level(WIFI_SPI_RST_PIN, 0);
system_delay_ms(50);
gpio_set_level(WIFI_SPI_RST_PIN, 1);
system_delay_ms(1000);
EXTI_ClearITPendingBit(EXTI_Line1);
NVIC_ClearPendingIRQ(EXTI1_IRQn);
interrupt_global_enable(temp_isr);
do
{
if(wifi_spi_echo_set("0")) // 关闭模块回写
{
zf_log(0, "exit echo failed");
return_state = 1;
break;
}
if(wifi_spi_auto_connect_wifi("0")) // 关闭自动连接
{
zf_log(0, "close auto connect failed");
return_state = 1;
break;
}
if(wifi_spi_set_model(wifi_mode)) // 设置运行模式
{
zf_log(0, "set run mode failed");
return_state = 1;
break;
}
if(wifi_spi_set_wifi((char *)wifi_ssid, (char *)pass_word)) // 连接 wifi 或者开启热点
{
zf_log(0, "wifi set failed");
return_state = 1;
break;
}
if(wifi_spi_get_information()) // 模块基本参数获取
{
zf_log(0, "get module information failed");
return_state = 1;
break;
}
// zf_log(0, "seekfree wifi spi init succeed");
#if WIFI_SPI_AUTO_CONNECT == 1
if(wifi_spi_connect_tcp_servers(WIFI_SPI_TARGET_IP, WIFI_SPI_TARGET_PORT, WIFI_SPI_SERIANET)) // 连接TCP服务器
{
zf_log(0, "connect TCP server failed");
return_state = 1;
break;
}
// zf_log(0, "connect TCP client succeed");
#endif
#if WIFI_SPI_AUTO_CONNECT == 2
if(wifi_spi_connect_udp_client(WIFI_SPI_TARGET_IP, WIFI_SPI_TARGET_PORT, WIFI_SPI_LOCAL_PORT, WIFI_SPI_SERIANET)) // 建立UDP连接
{
zf_log(0, "connect UDP server failed");
return_state = 1;
break;
}
// zf_log(0, "connect UDP server succeed");
#endif
// 模块初始化成功
wifi_spi_init_flag = 1;
}while(0);
return return_state;
}