import paddle.inference as paddle_infer import numpy as np import cv2 class Yolo_model_infer: def __init__(self, model_dir="./ppyoloe_plus_crn_t_auxhead_320_300e_coco", target_size=[320, 320]): # 初始化 paddle 推理 self.model_dir = model_dir self.config = paddle_infer.Config(model_dir + "/model.pdmodel", model_dir + "/model.pdiparams") self.config.disable_glog_info() self.config.enable_use_gpu(500, 0) self.config.enable_memory_optim() self.config.switch_ir_optim() self.config.switch_use_feed_fetch_ops(False) self.predictor = paddle_infer.create_predictor(self.config) self.input_names = self.predictor.get_input_names() self.input_handle = self.predictor.get_input_handle(self.input_names[0]) self.input_handle1 = self.predictor.get_input_handle(self.input_names[1]) self.output_names = self.predictor.get_output_names() self.output_handle = self.predictor.get_output_handle(self.output_names[0]) self.target_size = target_size origin_shape = (240, 320) resize_h, resize_w = self.target_size self.im_scale_y = resize_h / float(origin_shape[0]) self.im_scale_x = resize_w / float(origin_shape[1]) self.scale_info = np.array([[self.im_scale_y, self.im_scale_x]]).astype('float32') def infer(self,src) -> np.ndarray: image = self.preprocess(src) self.input_handle.copy_from_cpu(image) self.input_handle1.copy_from_cpu(self.scale_info) self.predictor.run() results = self.output_handle.copy_to_cpu() return results def preprocess(self,src): # resize # keep_ratio=0 img = cv2.resize( src, None, None, fx=self.im_scale_x, fy=self.im_scale_y, interpolation=2) # NormalizeImage img = img.astype(np.float32, copy=False) scale = 1.0 / 255.0 img *= scale # Permute img = img.transpose((2, 0, 1)) img = np.array((img, )) # .astype('float32') return img