# from infer import Yolo_model_infer # import cv2 # infer = Yolo_model_infer() # image = cv2.imread("ball_0094.png") # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # results = infer.infer(image) # expect_boxes = (results[:, 1] > 0.5) & (results[:, 0] > -1) # np_boxes = results[expect_boxes, :] # print(np_boxes) from infer_new import Yolo_model_infer import cv2 from visualize import visualize_box_mask import zmq import numpy as np from loguru import logger import time # infer = Yolo_model_infer() # image = cv2.imread("20240108161722.jpg") # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # results = infer.infer(image) # print(results) # expect_boxes = (results[:, 1] > 0.5) & (results[:, 0] > -1) # np_boxes = results[expect_boxes, :] # print(np_boxes) # context = zmq.Context() # camera1_socket = context.socket(zmq.SUB) # hwm = 5 # camera1_socket.setsockopt(zmq.RCVHWM, hwm) # camera1_socket.connect("tcp://localhost:5556") # camera1_socket.setsockopt_string(zmq.SUBSCRIBE, "") # camera1_socket.set_hwm(1) context1 = zmq.Context() socket_server = context1.socket(zmq.PUB) socket_server.bind("tcp://*:7777") labels = [ "tower", "sign", "shelter", "hospital", "basket", "base", "Yball", "Spiller", "Rmark", "Rblock", "Rball", "Mpiller", "Lpiller", "Lmark", "Bblock", "Bball" ] infer = Yolo_model_infer() cap = cv2.VideoCapture(2) cap.set(cv2.CAP_PROP_FRAME_WIDTH,320) cap.set(cv2.CAP_PROP_FRAME_HEIGHT,240) ret = True while True: # message = camera1_socket.recv() # np_array = np.frombuffer(message, dtype=np.uint8) # frame = cv2.imdecode(np_array, cv2.IMREAD_COLOR) ret, frame = cap.read() if ret: results = infer.infer(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # logger.info("111") img = visualize_box_mask(frame,results,labels) showim = np.array(img) # cv2.imshow("Received", showim) _, encode_frame = cv2.imencode(".jpg", showim) socket_server.send(encode_frame.tobytes()) # if cv2.waitKey(1) == 27: # break # image = cv2.imread("20240525_170248.jpg") # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # results = infer.infer(image) # # expect_boxes = (results[:, 1] > 0.5) & (results[:, 0] > -1) # # np_boxes = results[expect_boxes, :] # # print(np_boxes) # # img = visualize_box_mask(image,results,labels) # # img.save('20240525_170248_box.jpg', quality=95)