Files
project_infer/lane_server/lane_infer_server.py
hkslover 5840e5883f 5.24
2024-05-24 13:00:10 +08:00

61 lines
1.8 KiB
Python

import toml
import threading
from loguru import logger
import zmq
from infer import Lane_model_infer
import numpy as np
import cv2
lock = threading.Lock()
response = {'code': 0, 'data': 0}
# 处理server响应数据
def server_resp(lane_infer_port):
logger.info("lane server thread init success")
global response
context = zmq.Context()
# 启动server
socket = context.socket(zmq.REP)
socket.bind(f"tcp://*:{lane_infer_port}")
logger.info("lane infer server init success")
while True:
message = socket.recv_string()
with lock:
socket.send_pyobj(response)
if __name__ == "__main__":
cfg = toml.load('../cfg_infer_server.toml')
# 配置日志输出
logger.add(cfg['debug']['logger_filename'], format=cfg['debug']['logger_format'], retention = 5, level="INFO")
# 连接摄像头server 巡线只需要连接前摄像头
context = zmq.Context()
camera_socket = context.socket(zmq.SUB)
camera_socket.connect(f"tcp://localhost:{cfg['camera']['front_camera_port']}")
camera_socket.setsockopt_string(zmq.SUBSCRIBE, "")
logger.info("connect camera success")
# 初始化paddle推理器
predictor = Lane_model_infer()
logger.info("lane model load success")
# 启动lane_infer_server线程
mythread = threading.Thread(target=server_resp,
args=(cfg['server']['lane_infer_port'],),
daemon=True)
mythread.start()
while True:
message = camera_socket.recv()
np_array = np.frombuffer(message, dtype=np.uint8)
frame = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
frame = cv2.resize(frame,(320,240))
result = predictor.infer(frame)
with lock:
response['data'] = result
mythread.join()
logger.info("lane infer server exit")