feat: 增加部分任务
This commit is contained in:
95
utils.py
95
utils.py
@@ -1,24 +1,9 @@
|
||||
|
||||
from enum import Enum
|
||||
import numpy as np
|
||||
# 根据标签修改
|
||||
# class tlabel(Enum):
|
||||
# BBLOCK = 5 # 蓝色方块
|
||||
# RBLOCK = 2 # 红色方块
|
||||
# HOSPITAL = 3 # 医院
|
||||
# BBALL = 4 # 蓝球
|
||||
# YBALL = 5 # 黄球
|
||||
# TOWER = 6 # 通信塔
|
||||
# RBALL = 7 # 红球
|
||||
# BASKET = 8 # 球筐
|
||||
# MARKL = 9 # 指向标
|
||||
# MARKR = 10 # 指向标
|
||||
# SPILLAR = 11 # 小柱体 (红色)
|
||||
# MPILLAR = 12 # 中柱体 (蓝色)
|
||||
# LPILLAR = 13 # 大柱体 (红色)
|
||||
# SIGN = 14 # 文字标牌
|
||||
# TARGET = 15 # 目标靶
|
||||
# SHELTER = 16 # 停车区
|
||||
# BASE = 17 # 基地
|
||||
|
||||
lane_error = 0
|
||||
|
||||
class tlabel(Enum):
|
||||
TOWER = 0
|
||||
SIGN = 1
|
||||
@@ -36,6 +21,9 @@ class tlabel(Enum):
|
||||
LMARK = 13
|
||||
BBLOCK = 14
|
||||
BBALL = 15
|
||||
'''
|
||||
description: label_filter 的测试数据
|
||||
'''
|
||||
test_resp = {
|
||||
'code': 0,
|
||||
'data': np.array([
|
||||
@@ -48,6 +36,9 @@ test1_resp = {
|
||||
'code': 0,
|
||||
'data': np.array([])
|
||||
}
|
||||
'''
|
||||
description: yolo 目标检测标签过滤器,需要传入连接到 yolo server 的 socket 对象
|
||||
'''
|
||||
class label_filter:
|
||||
def __init__(self, socket, threshold=0.6):
|
||||
self.num = 0
|
||||
@@ -55,16 +46,33 @@ class label_filter:
|
||||
self.socket = socket
|
||||
self.threshold = threshold
|
||||
|
||||
self.img_size = (320, 240)
|
||||
self.img_size = (320, 240)
|
||||
'''
|
||||
description: 向 yolo server 请求目标检测数据
|
||||
param {*} self
|
||||
return {*}
|
||||
'''
|
||||
def get_resp(self):
|
||||
self.socket.send_string('')
|
||||
response = self.socket.recv_pyobj()
|
||||
return response
|
||||
'''
|
||||
description: 切换 yolo server 视频源 在分叉路口时目标检测需要使用前摄
|
||||
param {*} self
|
||||
param {*} camera_id 1 或者 2 字符串
|
||||
return {*}
|
||||
'''
|
||||
def switch_camera(self,camera_id):
|
||||
if camera_id == 1 or camera_id == 2:
|
||||
self.socket.send_string(f'{camera_id}')
|
||||
response = self.socket.recv_pyobj()
|
||||
return response
|
||||
'''
|
||||
description: 对模型推理推理结果使用 threshold 过滤 默认阈值为 0.5
|
||||
param {*} self
|
||||
param {*} data get_resp 返回的数据
|
||||
return {bool,array}
|
||||
'''
|
||||
def filter_box(self,data):
|
||||
if len(data) > 0:
|
||||
expect_boxes = (data[:, 1] > self.threshold) & (data[:, 0] > -1)
|
||||
@@ -83,10 +91,15 @@ class label_filter:
|
||||
if len(results) > 0:
|
||||
return True, np.array(results)
|
||||
return False, None
|
||||
'''
|
||||
description: 根据传入的标签过滤,返回该标签的个数以及 box
|
||||
param {*} self
|
||||
param {*} tlabel
|
||||
return {int, array}
|
||||
'''
|
||||
def get(self, tlabel):
|
||||
# 循环查找匹配的标签值
|
||||
# 返回对应标签的个数,以及坐标列表
|
||||
# TODO self.filter_box none judge
|
||||
response = self.get_resp()
|
||||
if response['code'] == 0:
|
||||
ret, results = self.filter_box(response['data'])
|
||||
@@ -97,8 +110,38 @@ class label_filter:
|
||||
self.pos = boxes[:, 2:] # [[x1 y1 x2 y2]]
|
||||
return self.num, self.pos
|
||||
return 0, []
|
||||
'''
|
||||
description:
|
||||
param {*} self
|
||||
param {*} tlabel_list
|
||||
return {*}
|
||||
'''
|
||||
def get_mult(self, tlabel_list):
|
||||
response = self.get_resp()
|
||||
if response['code'] == 0:
|
||||
ret, results = self.filter_box(response['data'])
|
||||
target_counts = len(tlabel_list)
|
||||
counts = 0
|
||||
if ret:
|
||||
for tlabel in tlabel_list:
|
||||
expect_boxes = (results[:, 0] == tlabel.value)
|
||||
has_true = np.any(expect_boxes)
|
||||
if has_true:
|
||||
counts += 1
|
||||
else:
|
||||
return False, []
|
||||
if counts == target_counts:
|
||||
return True, counts
|
||||
return False, []
|
||||
return False, []
|
||||
return False, []
|
||||
'''
|
||||
description: 判断传入的标签是否存在,存在返回 True
|
||||
param {*} self
|
||||
param {*} tlabel
|
||||
return {bool}
|
||||
'''
|
||||
def find(self, tlabel):
|
||||
# 遍历返回的列表,有对应标签则返回 True
|
||||
response = self.get_resp()
|
||||
if response['code'] == 0:
|
||||
ret, results = self.filter_box(response['data'])
|
||||
@@ -108,6 +151,12 @@ class label_filter:
|
||||
if len(boxes) != 0:
|
||||
return True
|
||||
return False
|
||||
'''
|
||||
description: 根据传入的标签,
|
||||
param {*} self
|
||||
param {*} tlabel
|
||||
return {*}
|
||||
'''
|
||||
def aim_left(self, tlabel):
|
||||
# 如果标签存在,则返回列表中位置最靠左的目标框和中心的偏移值
|
||||
response = self.get_resp()
|
||||
@@ -151,7 +200,7 @@ class label_filter:
|
||||
center_x_values = np.abs(boxes[:, 2] + boxes[:, 4] - self.img_size[0])
|
||||
center_x_index = np.argmin(center_x_values)
|
||||
error = (boxes[center_x_index][4] + boxes[center_x_index][2] - self.img_size[0]) / 2
|
||||
return (True, error+15)
|
||||
return (True, error)
|
||||
return (False, 0)
|
||||
|
||||
# class Calibrate:
|
||||
|
||||
Reference in New Issue
Block a user