feat: 增加base64传入动作指令
feat: 换用 deepseek 大模型 pref: 修改应急避险2停车条件
This commit is contained in:
16
app.py
16
app.py
@@ -10,7 +10,8 @@ import os
|
||||
import time
|
||||
import subprocess
|
||||
import signal
|
||||
import importlib
|
||||
import base64
|
||||
import json
|
||||
from main_upper import main_func
|
||||
server_command = [
|
||||
{"path": "/home/evan/Workplace/project_capture/build/", "script": "./capture"},
|
||||
@@ -51,7 +52,7 @@ logger.add(handler, format="{time:MM-DD HH:mm:ss} {message}", level="DEBUG")
|
||||
fileOptions_path = '/home/evan/Workplace/project_main'
|
||||
fileOptions_list = ['cfg_args.toml','cfg_main.toml', 'cfg_subtask.toml']
|
||||
cfg_args_path = os.path.join(fileOptions_path, 'cfg_args.toml')
|
||||
|
||||
cfg_move_area_path = os.path.join(fileOptions_path, 'cfg_move_area.json')
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
@@ -64,6 +65,17 @@ def run():
|
||||
config_args['lane_mode']['mode_index'] = int(mode_index)
|
||||
with open(cfg_args_path, 'w') as config_file:
|
||||
toml.dump(config_args, config_file)
|
||||
try:
|
||||
action_base64 = request.args.get('action')
|
||||
decoded_bytes = base64.b64decode(action_base64)
|
||||
decoded_str = decoded_bytes.decode('utf-8')
|
||||
json_data = json.loads(decoded_str)
|
||||
with open(cfg_move_area_path, 'w') as json_file:
|
||||
json.dump(json_data, json_file)
|
||||
except:
|
||||
# 当该字段没有传入参数时 清空配置文件 该任务按照正常流程去做
|
||||
with open(cfg_move_area_path, 'w') as json_file:
|
||||
pass
|
||||
return render_template('index2.html')
|
||||
|
||||
# @app.route('/csdn')
|
||||
|
||||
@@ -15,5 +15,5 @@ PutHanoi1_counts = 7
|
||||
PutHanoi2_counts = 2
|
||||
PutHanoi3_counts = 2
|
||||
MoveArea1_counts = 6
|
||||
MoveArea2_counts = 1700
|
||||
MoveArea2_counts = 10
|
||||
KickAss_counts = 10
|
||||
|
||||
0
cfg_move_area.json
Normal file
0
cfg_move_area.json
Normal file
165
subtask.py
165
subtask.py
@@ -3,6 +3,7 @@ from loguru import logger
|
||||
from utils import label_filter
|
||||
from utils import tlabel
|
||||
from utils import LLM
|
||||
from utils import LLM_deepseek
|
||||
from utils import CountRecord
|
||||
import utils
|
||||
import toml
|
||||
@@ -12,10 +13,13 @@ import variable as var
|
||||
import action as act
|
||||
import re
|
||||
import math
|
||||
import json
|
||||
import json5
|
||||
# import threading
|
||||
# import ctypes
|
||||
cfg = None
|
||||
cfg_args = None
|
||||
cfg_move_area = None
|
||||
by_cmd = None
|
||||
filter = None
|
||||
llm_bot = None
|
||||
@@ -48,9 +52,15 @@ def import_obj(_by_cmd, skip_queue):
|
||||
|
||||
global cfg
|
||||
global cfg_args
|
||||
global cfg_move_area
|
||||
global global_skip_queue
|
||||
cfg = toml.load('/home/evan/Workplace/project_main/cfg_subtask.toml') # 加载任务配置
|
||||
cfg_args = toml.load('/home/evan/Workplace/project_main/cfg_args.toml')
|
||||
try:
|
||||
with open('/home/evan/Workplace/project_main/cfg_move_area.json', 'r') as f:
|
||||
cfg_move_area = json.load(f)
|
||||
except:
|
||||
cfg_move_area = None
|
||||
by_cmd = _by_cmd
|
||||
global_skip_queue = skip_queue
|
||||
|
||||
@@ -68,7 +78,7 @@ def import_obj(_by_cmd, skip_queue):
|
||||
|
||||
filter = label_filter(socket)
|
||||
if cfg['move_area']['llm_enable']:
|
||||
llm_bot = LLM()
|
||||
llm_bot = LLM_deepseek()
|
||||
def car_stop():
|
||||
for _ in range(3):
|
||||
by_cmd.send_speed_x(0)
|
||||
@@ -467,7 +477,7 @@ class get_block1():
|
||||
time.sleep(0.1)
|
||||
by_cmd.send_position_axis_x(1, 100)
|
||||
time.sleep(1)
|
||||
by_cmd.send_position_axis_z(30, 90)
|
||||
by_cmd.send_position_axis_z(30, 100)
|
||||
time.sleep(0.5)
|
||||
by_cmd.send_angle_claw(63)
|
||||
time.sleep(0.5)
|
||||
@@ -572,7 +582,7 @@ class put_block():
|
||||
by_cmd.send_angle_claw(85)
|
||||
# by_cmd.send_angle_storage(0)
|
||||
time.sleep(1)
|
||||
by_cmd.send_position_axis_z(30,90)
|
||||
by_cmd.send_position_axis_z(30,100)
|
||||
time.sleep(1)
|
||||
by_cmd.send_angle_claw(25)
|
||||
by_cmd.send_distance_x(-10, 110)
|
||||
@@ -703,13 +713,13 @@ class up_tower():
|
||||
by_cmd.send_distance_x(-10, 120)
|
||||
time.sleep(1)
|
||||
# 上古參數
|
||||
by_cmd.send_distance_y(-10, 80)
|
||||
by_cmd.send_distance_y(-10, 50) # 80
|
||||
# 6_9 模型參數
|
||||
# by_cmd.send_distance_y(-10, 40)
|
||||
# 7_12_3 模型參數
|
||||
# by_cmd.send_distance_y(-10, 50)
|
||||
time.sleep(2)
|
||||
car_stop()
|
||||
# time.sleep(2)
|
||||
# car_stop()
|
||||
# FIXME 如果下發 distance 後直接 car_stop,則 distance 執行時間僅由指令間處理延時決定
|
||||
# time.sleep(3)
|
||||
# by_cmd.send_speed_y(-10)
|
||||
@@ -759,21 +769,21 @@ class get_rball():
|
||||
# 靠近塔
|
||||
by_cmd.send_angle_scoop(20)
|
||||
# 上古參數
|
||||
by_cmd.send_distance_y(-15, 70) # 50
|
||||
by_cmd.send_distance_y(-15, 50) # 50 # 70
|
||||
# 6_9 參數
|
||||
# by_cmd.send_distance_y(-15, 35)
|
||||
# time.sleep(2)
|
||||
# 7_12_3 參數
|
||||
# by_cmd.send_distance_y(-15, 45)
|
||||
time.sleep(2)
|
||||
car_stop()
|
||||
# time.sleep(2)
|
||||
# car_stop()
|
||||
calibrate_new(tlabel.RBALL,offset = 44, run = True)
|
||||
time.sleep(1)
|
||||
logger.info("抓红球")
|
||||
# by_cmd.send_angle_scoop(12)
|
||||
time.sleep(0.5)
|
||||
by_cmd.send_position_axis_z(30, 200)
|
||||
time.sleep(2.5)
|
||||
time.sleep(3)
|
||||
by_cmd.send_angle_scoop(12)
|
||||
time.sleep(0.5)
|
||||
by_cmd.send_angle_scoop(7)
|
||||
@@ -1255,33 +1265,36 @@ class move_area1():
|
||||
|
||||
# filter_w = (148, 560)
|
||||
# filter_h = (165, 390)
|
||||
if cfg_move_area == None:
|
||||
counts = 0
|
||||
while True:
|
||||
ocr_socket.send_string("")
|
||||
resp = ocr_socket.recv_pyobj()
|
||||
var.llm_text = ''
|
||||
counts += 1
|
||||
if resp.get('code') == 0:
|
||||
for item in resp.get('content'):
|
||||
|
||||
counts = 0
|
||||
while True:
|
||||
ocr_socket.send_string("")
|
||||
resp = ocr_socket.recv_pyobj()
|
||||
var.llm_text = ''
|
||||
counts += 1
|
||||
if resp.get('code') == 0:
|
||||
for item in resp.get('content'):
|
||||
|
||||
if item['probability']['average'] < 0.80:
|
||||
continue
|
||||
# box = item['location']
|
||||
# center_x = box['left'] + box['width'] / 2
|
||||
# center_y = box['top'] + box['height'] / 2
|
||||
# if center_x < filter_w[0] or center_x > filter_w[1] \
|
||||
# or center_y < filter_h[0] or center_y > filter_h[1]:
|
||||
# continue
|
||||
var.llm_text += item['words']
|
||||
break
|
||||
if counts >= 2:
|
||||
if item['probability']['average'] < 0.80:
|
||||
continue
|
||||
# box = item['location']
|
||||
# center_x = box['left'] + box['width'] / 2
|
||||
# center_y = box['top'] + box['height'] / 2
|
||||
# if center_x < filter_w[0] or center_x > filter_w[1] \
|
||||
# or center_y < filter_h[0] or center_y > filter_h[1]:
|
||||
# continue
|
||||
var.llm_text += item['words']
|
||||
break
|
||||
if counts >= 2:
|
||||
var.skip_llm_task_flag = True
|
||||
return
|
||||
logger.error(var.llm_text)
|
||||
if len(var.llm_text) < 3:
|
||||
var.skip_llm_task_flag = True
|
||||
return
|
||||
logger.error(var.llm_text)
|
||||
if len(var.llm_text) < 3:
|
||||
var.skip_llm_task_flag = True
|
||||
return
|
||||
else:
|
||||
# 不需要文字识别 直接使用传入的参数执行 action
|
||||
pass
|
||||
|
||||
var.task_speed = 9 # 12
|
||||
|
||||
@@ -1325,17 +1338,18 @@ class move_area2():
|
||||
pass
|
||||
def init(self):
|
||||
logger.info("应急避险第二阶段初始化")
|
||||
self.offset = 15
|
||||
self.offset = 60
|
||||
self.delta_x = 0
|
||||
self.delta_y = 0
|
||||
self.delta_omage = 0
|
||||
def find(self):
|
||||
if var.skip_llm_task_flag:
|
||||
if var.skip_llm_task_flag and cfg_move_area == None:
|
||||
return 5000
|
||||
ret, box = filter.get(tlabel.SHELTER)
|
||||
if ret:
|
||||
error = (box[0][2] + box[0][0] - 320) / 2 + self.offset
|
||||
if abs(error) < 20:
|
||||
# 增加了一个宽度过滤
|
||||
if abs(error) < 30 and abs(box[0][2] - box[0][0]) > 180:
|
||||
return 5000
|
||||
return False
|
||||
def add_item(self, item):
|
||||
@@ -1472,41 +1486,60 @@ class move_area2():
|
||||
logger.info(f"回正后最终位置: ({self.abs_y:.2f}, {self.abs_x:.2f}), 角度: {math.degrees(self.abs_w % (2 * math.pi))}")
|
||||
def exec(self):
|
||||
var.task_speed = 0
|
||||
if var.skip_llm_task_flag:
|
||||
logger.error("ocr 识别出错 直接跳过改任务")
|
||||
if var.skip_llm_task_flag and cfg_move_area == None:
|
||||
logger.error("ocr 识别出错 直接跳过该任务")
|
||||
return
|
||||
logger.info("开始寻找停车区域")
|
||||
car_stop()
|
||||
calibrate_new(tlabel.SHELTER, offset = 15, run = True)
|
||||
calibrate_new(tlabel.SHELTER, offset = 30, run = True)
|
||||
time.sleep(0.5)
|
||||
|
||||
# 调用大模型 然后执行动作
|
||||
try:
|
||||
resp = llm_bot.get_command_json(var.llm_text)
|
||||
logger.info(resp)
|
||||
except:
|
||||
logger.error("大模型超时,跳过任务")
|
||||
return
|
||||
|
||||
try:
|
||||
# FIXME 当前仍然可能存在文心一言分段返回和掺杂解释的问题,不确定当前条件足以过滤
|
||||
resp_commands = eval(re.findall("```json(.*?)```", resp, re.S)[0])
|
||||
logger.info(resp_commands)
|
||||
if len(resp_commands) == 0:
|
||||
if cfg_move_area == None:
|
||||
# 调用大模型 然后执行动作
|
||||
try:
|
||||
resp = llm_bot.get_command_json(var.llm_text)
|
||||
logger.info(f"llm 返回原数据 {resp}")
|
||||
except:
|
||||
logger.error("大模型 llm_bot 超时,跳过任务")
|
||||
return
|
||||
action_list = resp_commands
|
||||
# 进入停车区域
|
||||
by_cmd.send_distance_y(10, 450)
|
||||
time.sleep((450 * 5 / 1000) + 0.5)
|
||||
for action in action_list:
|
||||
self.add_item(action)
|
||||
time.sleep(0.1)
|
||||
time.sleep(0.5)
|
||||
self.reset()
|
||||
except:
|
||||
logger.warning("任务解析失败并退出,文心一言真是废物")
|
||||
pass
|
||||
|
||||
try:
|
||||
json_text = re.findall("```json(.*?)```", resp, re.S)
|
||||
if len(json_text) == 0:
|
||||
# 返回的内容不带'''json
|
||||
resp_commands = eval(resp)
|
||||
else:
|
||||
resp_commands = json5.loads(json_text[0])
|
||||
|
||||
|
||||
logger.info(resp_commands)
|
||||
if len(resp_commands) == 0:
|
||||
return
|
||||
action_list = resp_commands
|
||||
# 进入停车区域
|
||||
by_cmd.send_distance_y(10, 450)
|
||||
time.sleep((450 * 5 / 1000) + 0.5)
|
||||
for action in action_list:
|
||||
self.add_item(action)
|
||||
time.sleep(0.1)
|
||||
time.sleep(0.5)
|
||||
self.reset()
|
||||
except:
|
||||
logger.warning("任务解析失败并退出,文心一言真是废物")
|
||||
pass
|
||||
|
||||
else:
|
||||
# 无需调用大模型 直接开始执行传入的参数
|
||||
try:
|
||||
by_cmd.send_distance_y(10, 450)
|
||||
time.sleep((450 * 5 / 1000) + 0.5)
|
||||
for action in cfg_move_area:
|
||||
self.add_item(action)
|
||||
time.sleep(0.1)
|
||||
time.sleep(0.5)
|
||||
self.reset()
|
||||
except:
|
||||
pass
|
||||
pass
|
||||
def nexec(self):
|
||||
logger.warning("正在跳過大模型任務")
|
||||
time.sleep(2)
|
||||
|
||||
@@ -16,7 +16,7 @@ socket.connect("tcp://localhost:6667")
|
||||
logger.info("subtask yolo client init")
|
||||
|
||||
filter = label_filter(socket)
|
||||
filter.switch_camera(2)
|
||||
filter.switch_camera(1)
|
||||
|
||||
|
||||
# find_counts = 0
|
||||
@@ -25,10 +25,12 @@ filter.switch_camera(2)
|
||||
# label = tlabel.TPLATFORM
|
||||
while True:
|
||||
time.sleep(0.2)
|
||||
ret, box = filter.get(tlabel.BASE)
|
||||
ret, box = filter.get(tlabel.SHELTER)
|
||||
if ret:
|
||||
error = (box[0][2] + box[0][0] - 320) / 2
|
||||
logger.error(error)
|
||||
if abs(error) < 30 and abs(box[0][2] - box[0][0]) > 180:
|
||||
# height = box[0][3] - box[0][1]
|
||||
logger.error(111)
|
||||
|
||||
# label = tlabel.HOSPITAL
|
||||
# ret, box = filter.get(label)
|
||||
|
||||
@@ -17,13 +17,7 @@ while True:
|
||||
if resp.get('code') == 0:
|
||||
text = ''
|
||||
for item in resp.get('content'):
|
||||
if item['probability']['average'] < 0.90:
|
||||
continue
|
||||
box = item['location']
|
||||
center_x = box['left'] + box['width'] / 2
|
||||
center_y = box['top'] + box['height'] / 2
|
||||
if center_x < filter_w[0] or center_x > filter_w[1] \
|
||||
or center_y < filter_h[0] or center_y > filter_h[1]:
|
||||
if item['probability']['average'] < 0.80:
|
||||
continue
|
||||
text += item['words']
|
||||
print(text)
|
||||
|
||||
205
utils.py
205
utils.py
@@ -2,6 +2,7 @@
|
||||
from enum import Enum
|
||||
import numpy as np
|
||||
import erniebot
|
||||
from openai import OpenAI
|
||||
from simple_pid import PID
|
||||
from loguru import logger
|
||||
import threading
|
||||
@@ -372,15 +373,72 @@ class label_filter:
|
||||
error = (boxes[center_x_index][4] + boxes[center_x_index][2] - self.img_size[0]) / 2
|
||||
return (True, error)
|
||||
return (False, 0)
|
||||
class LLM_deepseek:
|
||||
def __init__(self):
|
||||
self.client = OpenAI(api_key="sk-c2e1073883304143981a9750b97c3518", base_url="https://api.deepseek.com")
|
||||
self.prompt = '''
|
||||
你是一个机器人动作规划者,请把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
|
||||
允许的动作及其对应格式如下:
|
||||
[{'properties': {'index': {'title': 'Index', 'type': 'integer'}, 'action': {'title': 'Action', 'type': 'string'}, 'time': {'title': 'Time', 'type': 'number'}}, 'required': ['index', 'action', 'time'], 'title': 'Action', 'type': 'object'}]
|
||||
我不允许你自我创造出新的 action,action 字段仅仅包括以下内容:
|
||||
go_right 向右移动
|
||||
go_left 向左移动
|
||||
go_front 向前移动
|
||||
go_back 向后移动
|
||||
go_left_rotate 向左旋转
|
||||
go_right_rotate 向右旋转
|
||||
beep_seconds 蜂鸣器鸣叫的时间
|
||||
beep_counts 蜂鸣器鸣叫的次数
|
||||
light_seconds 灯光发光的时间
|
||||
light_counts 灯光闪烁的次数
|
||||
beep_light_counts 灯光和蜂鸣器一起闪烁的次数
|
||||
go_sleep 什么都不做
|
||||
我的话和你的回复示例如下:
|
||||
我的话:向左移 0.1m, 向左转弯 85 度
|
||||
你的回复:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
|
||||
我的话:向右移 0.2m, 向前 0.1m
|
||||
你的回复:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
|
||||
我的话:向右转 90 度,向右移 0.1m
|
||||
你的回复:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
|
||||
我的话:原地左转 38 度
|
||||
你的回复:[{"index":0,"action":"go_left_rotate","time":38}]
|
||||
我的话:蜂鸣器发声 5 秒
|
||||
你的回复:[{"index":0,"action":"beep_seconds","time":5}]
|
||||
我的话:发光或者照亮 5 秒
|
||||
你的回复:[{"index":0,"action":"light_seconds","time":5}]
|
||||
我的话:向右走 30cm,照亮 2s
|
||||
你的回复:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
|
||||
我的话:向左移 0.2m, 向后 0.1m
|
||||
你的回复:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
|
||||
我的话:鸣叫 3 声
|
||||
你的回复:[{"index":0,"action":"beep_counts","time":3}]
|
||||
我的话:前行零点五米
|
||||
你的回复:[{"index":0,"action":"go_front","time":0.5}]
|
||||
我的话:闪烁灯光 1 次并伴有蜂鸣器
|
||||
你的回复:[{"index":0,"action":"beep_light_counts","time": 1}]
|
||||
我的话:灯光闪烁 3 次同时蜂鸣器也叫 3 次
|
||||
你的回复:[{"index":0,"action":"beep_light_counts","time": 3}]
|
||||
|
||||
|
||||
强调一下,对于‘离开’这个指令,请忽略,这对我很重要!
|
||||
'''
|
||||
def get_command_json(self,chat):
|
||||
response = self.client.chat.completions.create(
|
||||
model="deepseek-chat",
|
||||
messages=[
|
||||
{"role": "system", "content": self.prompt},
|
||||
{"role": "user", "content": '我的话如下:' + chat},
|
||||
],
|
||||
stream=False,
|
||||
temperature=0.7
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
class LLM:
|
||||
def __init__(self):
|
||||
self.init_done_flag = False
|
||||
erniebot.api_type = "qianfan"
|
||||
erniebot.ak = "jReawMtWhPu0wrxN9Rp1MzZX"
|
||||
erniebot.sk = "eowS1BqsNgD2i0C9xNnHUVOSNuAzVTh6"
|
||||
self.model = 'ernie-3.5'
|
||||
self.model = 'ernie-lite'
|
||||
# self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。
|
||||
# 严格按照下面的描述生成给定格式 json,从现在开始你仅仅给我返回 json 数据!'''
|
||||
# self.prompt += '''正确的示例如下:
|
||||
@@ -395,73 +453,122 @@ class LLM:
|
||||
# 鸣叫 3 声 [{'func': 'beep', 'time': 3}]
|
||||
# 前行零点五米 [{'func': 'move', 'x': 0.5, 'y': 0}]
|
||||
# '''
|
||||
# self.prompt = '''
|
||||
# 你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
|
||||
# 允许的动作及其对应格式如下:
|
||||
# - 向左移:{"index":N,"action":"go_left","time":T}
|
||||
# - 向右移:{"index":N,"action":"go_right","time":T}
|
||||
# - 向前移:{"index":N,"action":"go_front","time":T}
|
||||
# - 向后移:{"index":N,"action":"go_back","time":T}
|
||||
# - 向左转:{"index":N,"action":"go_left_rotate","time":T}
|
||||
# - 向右转:{"index":N,"action":"go_right_rotate","time":T}
|
||||
# - 蜂鸣器发声:{"index":N,"action":"beep_seconds","time":T}
|
||||
# - 蜂鸣器发声次数:{"index":N,"action":"beep_counts","time":T}
|
||||
# - 发光或者照亮:{"index":N,"action":"light_seconds","time":T}
|
||||
# - 发光次数或者闪烁次数:{"index":N,"action":"light_counts","time":T}
|
||||
# - 发光并伴随蜂鸣器:{"index":N,"action":"beep_light_counts","time":T}
|
||||
# - 等待{"index":N,"action":"go_sleep","time":T}
|
||||
# 示例输入输出如下:
|
||||
# 输入:向左移 0.1m, 向左转弯 85 度
|
||||
# 输出:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
|
||||
# 输入:向右移 0.2m, 向前 0.1m
|
||||
# 输出:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
|
||||
# 输入:向右转 90 度,向右移 0.1m
|
||||
# 输出:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
|
||||
# 输入:原地左转 38 度
|
||||
# 输出:[{"index":0,"action":"go_left_rotate","time":38}]
|
||||
# 输入:蜂鸣器发声 5 秒
|
||||
# 输出:[{"index":0,"action":"beep_seconds","time":5}]
|
||||
# 输入:发光或者照亮 5 秒
|
||||
# 输出:[{"index":0,"action":"light_seconds","time":5}]
|
||||
# 输入:向右走 30cm, 照亮 2s
|
||||
# 输出:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
|
||||
# 输入:向左移 0.2m, 向后 0.1m
|
||||
# 输出:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
|
||||
# 输入:鸣叫 3 声
|
||||
# 输出:[{"index":0,"action":"beep_counts","time":3}]
|
||||
# 输入:前行零点五米
|
||||
# 输出:[{"index":0,"action":"go_front","time":0.5}]
|
||||
# 输入:闪烁灯光 1 次并伴有蜂鸣器
|
||||
# 输出:[{"index":0,"action":"beep_light_counts","time": 1}]
|
||||
# 输入:灯光闪烁 3 次同时蜂鸣器也叫 3 次
|
||||
# 输出:[{"index":0,"action":"beep_light_counts","time": 3}]
|
||||
# '''
|
||||
# self.prompt += '''请根据上面的示例,解析该任务文本,并返回相应的 JSON 字段。确保 JSON 中包含了键 index action 和 time 以及相应的值。不要附带其他的解释和注释,只需要 JSON 字段。'''
|
||||
self.prompt = '''
|
||||
你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
|
||||
允许的动作及其对应格式如下:
|
||||
- 向左移:{"index":N,"action":"go_left","time":T}
|
||||
- 向右移:{"index":N,"action":"go_right","time":T}
|
||||
- 向前移:{"index":N,"action":"go_front","time":T}
|
||||
- 向后移:{"index":N,"action":"go_back","time":T}
|
||||
- 向左转:{"index":N,"action":"go_left_rotate","time":T}
|
||||
- 向右转:{"index":N,"action":"go_right_rotate","time":T}
|
||||
- 蜂鸣器发声:{"index":N,"action":"beep_seconds","time":T}
|
||||
- 蜂鸣器发声次数:{"index":N,"action":"beep_counts","time":T}
|
||||
- 发光或者照亮:{"index":N,"action":"light_seconds","time":T}
|
||||
- 发光次数或者闪烁次数:{"index":N,"action":"light_counts","time":T}
|
||||
- 发光并伴随蜂鸣器:{"index":N,"action":"beep_light_counts","time":T}
|
||||
- 等待{"index":N,"action":"go_sleep","time":T}
|
||||
示例输入输出如下:
|
||||
输入:向左移 0.1m, 向左转弯 85 度
|
||||
输出:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
|
||||
输入:向右移 0.2m, 向前 0.1m
|
||||
输出:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
|
||||
输入:向右转 90 度,向右移 0.1m
|
||||
输出:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
|
||||
输入:原地左转 38 度
|
||||
输出:[{"index":0,"action":"go_left_rotate","time":38}]
|
||||
输入:蜂鸣器发声 5 秒
|
||||
输出:[{"index":0,"action":"beep_seconds","time":5}]
|
||||
输入:发光或者照亮 5 秒
|
||||
输出:[{"index":0,"action":"light_seconds","time":5}]
|
||||
输入:向右走 30cm, 照亮 2s
|
||||
输出:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
|
||||
输入:向左移 0.2m, 向后 0.1m
|
||||
输出:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
|
||||
输入:鸣叫 3 声
|
||||
输出:[{"index":0,"action":"beep_counts","time":3}]
|
||||
输入:前行零点五米
|
||||
输出:[{"index":0,"action":"go_front","time":0.5}]
|
||||
输入:闪烁灯光 1 次并伴有蜂鸣器
|
||||
输出:[{"index":0,"action":"beep_light_counts","time": 1}]
|
||||
输入:灯光闪烁 3 次同时蜂鸣器也叫 3 次
|
||||
输出:[{"index":0,"action":"beep_light_counts","time": 3}]
|
||||
[{'properties': {'index': {'title': 'Index', 'type': 'integer'}, 'action': {'title': 'Action', 'type': 'string'}, 'time': {'title': 'Time', 'type': 'number'}}, 'required': ['index', 'action', 'time'], 'title': 'Action', 'type': 'object'}]
|
||||
我不允许你自我创造出新的 action,action 字段仅仅包括以下内容:
|
||||
go_right 向右移动
|
||||
go_left 向左移动
|
||||
go_front 向前移动
|
||||
go_back 向后移动
|
||||
go_left_rotate 向左旋转
|
||||
go_right_rotate 向右旋转
|
||||
beep_seconds 蜂鸣器鸣叫的时间
|
||||
beep_counts 蜂鸣器鸣叫的次数
|
||||
light_seconds 灯光发光的时间
|
||||
light_counts 灯光闪烁的次数
|
||||
beep_light_counts 灯光和蜂鸣器一起闪烁的次数
|
||||
go_sleep 什么都不做
|
||||
我的话和你的回复示例如下:
|
||||
我的话:向左移 0.1m, 向左转弯 85 度
|
||||
你的回复:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
|
||||
我的话:向右移 0.2m, 向前 0.1m
|
||||
你的回复:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
|
||||
我的话:向右转 90 度,向右移 0.1m
|
||||
你的回复:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
|
||||
我的话:原地左转 38 度
|
||||
你的回复:[{"index":0,"action":"go_left_rotate","time":38}]
|
||||
我的话:蜂鸣器发声 5 秒
|
||||
你的回复:[{"index":0,"action":"beep_seconds","time":5}]
|
||||
我的话:发光或者照亮 5 秒
|
||||
你的回复:[{"index":0,"action":"light_seconds","time":5}]
|
||||
我的话:向右走 30cm,照亮 2s
|
||||
你的回复:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
|
||||
我的话:向左移 0.2m, 向后 0.1m
|
||||
你的回复:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
|
||||
我的话:鸣叫 3 声
|
||||
你的回复:[{"index":0,"action":"beep_counts","time":3}]
|
||||
我的话:前行零点五米
|
||||
你的回复:[{"index":0,"action":"go_front","time":0.5}]
|
||||
我的话:闪烁灯光 1 次并伴有蜂鸣器
|
||||
你的回复:[{"index":0,"action":"beep_light_counts","time": 1}]
|
||||
我的话:灯光闪烁 3 次同时蜂鸣器也叫 3 次
|
||||
你的回复:[{"index":0,"action":"beep_light_counts","time": 3}]
|
||||
|
||||
我的话如下:
|
||||
'''
|
||||
self.prompt += '''请根据上面的示例,解析该任务文本,并返回相应的 JSON 字段。确保 JSON 中包含了键 index action 和 time 以及相应的值。不要附带其他的解释和注释,只需要 JSON 字段。'''
|
||||
self.messages = []
|
||||
self.resp = None
|
||||
worker = threading.Thread(target=self.reset, daemon=True)
|
||||
worker.start()
|
||||
def reset(self):
|
||||
self.messages = [self.make_message(self.prompt)]
|
||||
self.resp = erniebot.ChatCompletion.create(
|
||||
model=self.model,
|
||||
messages=self.messages,
|
||||
)
|
||||
self.messages.append(self.resp.to_message())
|
||||
self.init_done_flag = True
|
||||
logger.info("LLM init done")
|
||||
try:
|
||||
self.messages = [self.make_message(self.prompt)]
|
||||
self.resp = erniebot.ChatCompletion.create(
|
||||
model=self.model,
|
||||
messages=self.messages,
|
||||
)
|
||||
self.messages.append(self.resp.to_message())
|
||||
self.init_done_flag = True
|
||||
logger.info("LLM init done")
|
||||
except:
|
||||
logger.error("LLM init error")
|
||||
def make_message(self,content):
|
||||
return {'role': 'user', 'content': content}
|
||||
def get_command_json(self,chat):
|
||||
while self.init_done_flag == False: # 等待初始化 (要是等到调用还没初始化,那就是真寄了)
|
||||
pass
|
||||
chat = '我的话如下:' + chat
|
||||
self.messages.append(self.make_message(chat))
|
||||
self.resp = erniebot.ChatCompletion.create(
|
||||
model=self.model,
|
||||
messages=self.messages,
|
||||
)
|
||||
self.messages.append(self.resp.to_message())
|
||||
resp = self.resp.get_result().replace(' ', '').replace('\n', '').replace('\t', '')
|
||||
resp = self.resp.get_result().replace(' ', '')
|
||||
return resp
|
||||
|
||||
class CountRecord:
|
||||
|
||||
Reference in New Issue
Block a user