from enum import Enum import numpy as np lane_error = 0 class tlabel(Enum): TOWER = 0 SIGN = 1 SHELTER = 2 HOSPITAL = 3 BASKET = 4 BASE = 5 YBALL = 6 SPILLER = 7 RMARK = 8 RBLOCK = 9 RBALL = 10 MPILLER = 11 LPILLER = 12 LMARK = 13 BBLOCK = 14 BBALL = 15 ''' description: label_filter 的测试数据 ''' test_resp = { 'code': 0, 'data': np.array([ [4., 0.97192055, 26.64415, 228.26755, 170.16872, 357.6216], [4., 0.97049206, 474.0152, 251.2854, 612.91644, 381.6831], [5., 0.972649, 250.84174, 238.43622, 378.115, 367.34906] ]) } test1_resp = { 'code': 0, 'data': np.array([]) } ''' description: yolo 目标检测标签过滤器,需要传入连接到 yolo server 的 socket 对象 ''' class label_filter: def __init__(self, socket, threshold=0.6): self.num = 0 self.pos = [] self.socket = socket self.threshold = threshold self.img_size = (320, 240) ''' description: 向 yolo server 请求目标检测数据 param {*} self return {*} ''' def get_resp(self): self.socket.send_string('') response = self.socket.recv_pyobj() return response ''' description: 切换 yolo server 视频源 在分叉路口时目标检测需要使用前摄 param {*} self param {*} camera_id 1 或者 2 字符串 return {*} ''' def switch_camera(self,camera_id): if camera_id == 1 or camera_id == 2: self.socket.send_string(f'{camera_id}') response = self.socket.recv_pyobj() return response ''' description: 对模型推理推理结果使用 threshold 过滤 默认阈值为 0.5 param {*} self param {*} data get_resp 返回的数据 return {bool,array} ''' def filter_box(self,data): if len(data) > 0: expect_boxes = (data[:, 1] > self.threshold) & (data[:, 0] > -1) np_boxes = data[expect_boxes, :] results = [ [ item[0], # 'label': item[1], # 'score': item[2], # 'xmin': item[3], # 'ymin': item[4], # 'xmax': item[5] # 'ymax': ] for item in np_boxes ] if len(results) > 0: return True, np.array(results) return False, None ''' description: 根据传入的标签过滤,返回该标签的个数以及 box param {*} self param {*} tlabel return {int, array} ''' def get(self, tlabel): # 循环查找匹配的标签值 # 返回对应标签的个数,以及坐标列表 response = self.get_resp() if response['code'] == 0: ret, results = self.filter_box(response['data']) if ret: expect_boxes = (results[:, 0] == tlabel.value) boxes = results[expect_boxes, :] self.num = len(boxes) self.pos = boxes[:, 2:] # [[x1 y1 x2 y2]] return self.num, self.pos return 0, [] ''' description: param {*} self param {*} tlabel_list return {*} ''' def get_mult(self, tlabel_list): response = self.get_resp() if response['code'] == 0: ret, results = self.filter_box(response['data']) target_counts = len(tlabel_list) counts = 0 if ret: for tlabel in tlabel_list: expect_boxes = (results[:, 0] == tlabel.value) has_true = np.any(expect_boxes) if has_true: counts += 1 else: return False, [] if counts == target_counts: return True, counts return False, [] return False, [] return False, [] ''' description: 判断传入的标签是否存在,存在返回 True param {*} self param {*} tlabel return {bool} ''' def find(self, tlabel): response = self.get_resp() if response['code'] == 0: ret, results = self.filter_box(response['data']) if ret: expect_boxes = (results[:, 0] == tlabel.value) boxes = results[expect_boxes, :] if len(boxes) != 0: return True return False ''' description: 根据传入的标签, param {*} self param {*} tlabel return {*} ''' def aim_left(self, tlabel): # 如果标签存在,则返回列表中位置最靠左的目标框和中心的偏移值 response = self.get_resp() if response['code'] == 0: ret, results = self.filter_box(response['data']) if ret: expect_boxes = (results[:, 0] == tlabel.value) boxes = results[expect_boxes, :] if len(boxes) == 0: return (False, ) xmin_values = boxes[:, 2] # xmin xmin_index = np.argmin(xmin_values) error = (boxes[xmin_index][4] + boxes[xmin_index][2] - self.img_size[0]) / 2 return (True, error) return (False, ) def aim_right(self, tlabel): # 如果标签存在,则返回列表中位置最靠右的目标框和中心的偏移值 response = self.get_resp() if response['code'] == 0: ret, results = self.filter_box(response['data']) if ret: expect_boxes = (results[:, 0] == tlabel.value) boxes = results[expect_boxes, :] if len(boxes) == 0: return (False, ) xmax_values = boxes[:, 4] # xmax xmax_index = np.argmax(xmax_values) error = (boxes[xmax_index][4] + boxes[xmax_index][2] - self.img_size[0]) / 2 return (True, error) return (False, ) def aim_near(self, tlabel): # 如果标签存在,则返回列表中位置最近的目标框和中心的偏移值 response = self.get_resp() if response['code'] == 0: ret, results = self.filter_box(response['data']) if ret: expect_boxes = (results[:, 0] == tlabel.value) boxes = results[expect_boxes, :] if len(boxes) == 0: return (False, 0) center_x_values = np.abs(boxes[:, 2] + boxes[:, 4] - self.img_size[0]) center_x_index = np.argmin(center_x_values) error = (boxes[center_x_index][4] + boxes[center_x_index][2] - self.img_size[0]) / 2 return (True, error) return (False, 0) # class Calibrate: # def __init__(self,by_cmd): # # 车控制对象初始化 # self.by_cmd = by_cmd # def aim(self,error): # self.by_cmd.send_distance_x(error,) if __name__ == '__main__': obj = label_filter(None) # results = obj.filter_box(resp['data']) # expect_boxes = (results[:, 0] == tlabel.SPILLAR.value) # np_boxes = results[expect_boxes, :] # print(np_boxes[:, 2:]) # print(len(np_boxes)) print(obj.find(tlabel.BBALL)) print(obj.aim_left(tlabel.BBALL)) print(obj.aim_right(tlabel.BBALL)) print(obj.aim_near(tlabel.BBALL)) print(obj.get(tlabel.HOSPITAL))