import os import sys import math parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(parent_dir) from by_cmd_py import by_cmd_py import time import zmq import numpy as np context = zmq.Context() socket = context.socket(zmq.REQ) socket.connect("tcp://localhost:6666") def car_stop(): for _ in range(3): cmd_py_obj.send_speed_x(0) time.sleep(0.2) cmd_py_obj.send_speed_y(0) time.sleep(0.2) cmd_py_obj.send_speed_omega(0) class LLM_Action: def __init__(self,cmd_py_obj): self.by_cmd = cmd_py_obj self.action_dict = { 'beep_seconds': self.beep_seconds, 'beep_counts': self.beep_counts, 'light_seconds': self.light_seconds, 'light_counts': self.light_counts, 'beep_light_counts': self.beep_light_counts, 'beep_light_seconds': self.beep_light_seconds, 'go_front': self.go_front, 'go_back': self.go_back, 'go_left': self.go_left, 'go_right': self.go_right, 'go_left_rotate': self.go_left_rotate, 'go_right_rotate': self.go_right_rotate, 'go_sleep': self.go_sleep } self.front_time = 0 self.back_time = 0 self.left_time = 0 self.right_time = 0 self.sum_rotate_angle = 0 self.abs_x = 0 # 为了和程序指令适配,其中 x y 方向互换 self.abs_y = 0 self.abs_w = 0 pass def __call__(self, item): try: return self.action_dict[item.get('action')](item.get('time')) except: pass return False def beep_seconds(self, _time): self.by_cmd.send_beep(1) time.sleep(_time * 0.7) self.by_cmd.send_beep(0) return True def beep_counts(self, _time): for _ in range(_time): self.by_cmd.send_beep(1) time.sleep(0.3) self.by_cmd.send_beep(0) time.sleep(0.2) return True def light_seconds(self, _time): self.by_cmd.send_light(1) time.sleep(_time * 0.7) self.by_cmd.send_light(0) return True def light_counts(self, _time): for _ in range(_time): self.by_cmd.send_light(1) time.sleep(0.3) self.by_cmd.send_light(0) time.sleep(0.2) return True def beep_light_counts(self, _time): for _ in range(_time): self.by_cmd.send_beep(1) self.by_cmd.send_light(1) time.sleep(0.3) self.by_cmd.send_beep(0) self.by_cmd.send_light(0) time.sleep(0.2) return True def beep_light_seconds(self, _time): self.by_cmd.send_beep(1) self.by_cmd.send_light(1) time.sleep(_time * 0.3) self.by_cmd.send_beep(0) self.by_cmd.send_light(0) return True def go_front(self, _time): self.abs_y -= math.sin(self.abs_w) * _time self.abs_x += math.cos(self.abs_w) * _time print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") speed_time = int(abs(_time) * 750) self.by_cmd.send_distance_x(10, speed_time) time.sleep(speed_time / 100) self.front_time += speed_time return True def go_back(self, _time): self.abs_y += math.sin(self.abs_w) * _time self.abs_x -= math.cos(self.abs_w) * _time print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") speed_time = int(abs(_time) * 750) self.by_cmd.send_distance_x(-10, speed_time) time.sleep(speed_time / 100) self.back_time += speed_time return True def go_left(self, _time): self.abs_y -= math.cos(self.abs_w) * _time self.abs_x -= math.sin(self.abs_w) * _time print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") speed_time = int(abs(_time) * 750) self.by_cmd.send_distance_y(-10, speed_time) time.sleep(speed_time / 100) self.left_time += speed_time return True def go_right(self, _time): self.abs_y += math.cos(self.abs_w) * _time self.abs_x += math.sin(self.abs_w) * _time print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") speed_time = int(abs(_time) * 750) self.by_cmd.send_distance_y(10, speed_time) time.sleep(speed_time / 100) self.right_time += speed_time return True def go_shift(self, _dis_x, _dis_y): direct_x = 1.0 if (_dis_x > 0) else -1.0 direct_y = 1.0 if (_dis_y > 0) else -1.0 self.abs_y -= math.sin(self.abs_w) * _dis_x self.abs_x += math.cos(self.abs_w) * _dis_x self.abs_y += math.cos(self.abs_w) * _dis_y self.abs_x += math.sin(self.abs_w) * _dis_y print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") speed_time_x = int(abs(_dis_x) * 750) speed_time_y = int(abs(_dis_y) * 750) self.by_cmd.send_distance_x(10 * direct_x, speed_time_x) self.by_cmd.send_distance_y(10 * direct_y, speed_time_y) time.sleep(max(speed_time_x, speed_time_y) / 100) #FIXME 除以 100 是否正确 return True def go_left_rotate(self, _time): self.abs_w += math.radians(_time) # 弧度制 print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") self.sum_rotate_angle -= _time speed_time = int(abs(_time) * 7.25) self.by_cmd.send_angle_omega(30, speed_time) time.sleep(speed_time / 200 + 0.5) # time.sleep(speed_time / _time / 2) return True def go_right_rotate(self, _time): self.abs_w -= math.radians(_time) # 弧度制 print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") self.sum_rotate_angle += _time speed_time = int(abs(_time) * 7.25) self.by_cmd.send_angle_omega(-30, speed_time) time.sleep(speed_time / 200 + 0.5) # time.sleep(speed_time / _time / 2) return True def go_sleep(self, _time): time.sleep(_time*0.7) return True def reset(self): print(f"开始复位:[当前位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)}]") # 先复位角度 if self.sum_rotate_angle > 0: self.sum_rotate_angle = self.sum_rotate_angle % 360 else: self.sum_rotate_angle = -(abs(self.sum_rotate_angle) % 360) # if self.sum_rotate_angle > 0: # # 采用左转回正 # self.go_left_rotate(self.sum_rotate_angle) # # speed_time = int(abs(self.sum_rotate_angle) * 7.25) # # self.by_cmd.send_angle_omega(30, speed_time) # pass # else: # # 采用右转回正 # self.go_right_rotate(abs(self.sum_rotate_angle)) # # speed_time = int(abs(self.sum_rotate_angle) * 7.25) # # self.by_cmd.send_angle_omega(-30, speed_time) left_dregee = math.degrees(self.abs_w % (2 * math.pi)) #归一化角度到 0-2pi if math.sin(self.abs_w) < 0: print(f"需要左旋 {360.0 - left_dregee} 回正") self.go_left_rotate(360.0 - left_dregee) else: print(f"需要右旋 {left_dregee} 回正") self.go_right_rotate(left_dregee) time.sleep(0.1) self.go_shift(self.abs_x * -1.0, self.abs_y * -1.0 - 0.6) # 左移 0.6m 回到赛道 # # 再回正 x 轴 # if self.front_time > self.back_time: # # 采用后退回正 # speed_time = self.front_time - self.back_time # self.by_cmd.send_distance_x(-10, speed_time) # else: # speed_time = self.back_time - self.front_time # self.by_cmd.send_distance_x(10, speed_time) # time.sleep(speed_time / 100) # time.sleep(0.1) # # 最后回正 y 轴 # speed_time = self.left_time - self.right_time # if speed_time < 0: # speed_time = 4500 + abs(speed_time) # else: # speed_time = 4500 - speed_time # self.by_cmd.send_distance_y(-10, speed_time / 15 + 100) # print(speed_time * 1e-3 * 0.9) # time.sleep(speed_time * 1e-3 * 0.9) print(f"回正后最终位置: ({self.abs_y:.2f}, {self.abs_x:.2f}), 角度: {math.degrees(self.abs_w % (2 * math.pi))}") if __name__ == "__main__": cmd_py_obj = by_cmd_py() # cmd_py_obj.send_angle_omega(-30, 20 * 7.25) # time.sleep(20 * 7.25 / 20 / 2) llm_act = LLM_Action(cmd_py_obj) action_list = [{"index":0,"action":"go_left_rotate","time":270},{"index":1,"action":"go_back","time":0.2},{"index":2,"action":"go_left","time":0.2},{"index":2,"action":"beep_counts","time":3}] cmd_py_obj.send_distance_y(10, 450) time.sleep((450 * 5 / 1000) + 0.5) # time.sleep(15 * 300 * 1e-3 * 0.7) # car_stop() for action in action_list: llm_act(action) time.sleep(0.1) pass time.sleep(1) llm_act.reset() # car_stop()