Files
project_main/utils.py
bmy 49c0499f24 pref: 注册时直接传入任务类
feat: 分任务设置检测计数值
2024-05-29 21:23:05 +08:00

176 lines
6.2 KiB
Python

from enum import Enum
import numpy as np
# 根据标签修改
# class tlabel(Enum):
# BBLOCK = 5 # 蓝色方块
# RBLOCK = 2 # 红色方块
# HOSPITAL = 3 # 医院
# BBALL = 4 # 蓝球
# YBALL = 5 # 黄球
# TOWER = 6 # 通信塔
# RBALL = 7 # 红球
# BASKET = 8 # 球筐
# MARKL = 9 # 指向标
# MARKR = 10 # 指向标
# SPILLAR = 11 # 小柱体 (红色)
# MPILLAR = 12 # 中柱体 (蓝色)
# LPILLAR = 13 # 大柱体 (红色)
# SIGN = 14 # 文字标牌
# TARGET = 15 # 目标靶
# SHELTER = 16 # 停车区
# BASE = 17 # 基地
class tlabel(Enum):
TOWER = 0
SIGN = 1
SHELTER = 2
HOSPITAL = 3
BASKET = 4
BASE = 5
YBALL = 6
SPILLER = 7
RMARK = 8
RBLOCK = 9
RBALL = 10
MPILLER = 11
LPILLER = 12
LMARK = 13
BBLOCK = 14
BBALL = 15
test_resp = {
'code': 0,
'data': np.array([
[4., 0.97192055, 26.64415, 228.26755, 170.16872, 357.6216],
[4., 0.97049206, 474.0152, 251.2854, 612.91644, 381.6831],
[5., 0.972649, 250.84174, 238.43622, 378.115, 367.34906]
])
}
test1_resp = {
'code': 0,
'data': np.array([])
}
class label_filter:
def __init__(self, socket, threshold=0.6):
self.num = 0
self.pos = []
self.socket = socket
self.threshold = threshold
self.img_size = (320, 240)
def get_resp(self):
self.socket.send_string('')
response = self.socket.recv_pyobj()
return response
def switch_camera(self,camera_id):
if camera_id == 1 or camera_id == 2:
self.socket.send_string(f'{camera_id}')
response = self.socket.recv_pyobj()
return response
def filter_box(self,data):
if len(data) > 0:
expect_boxes = (data[:, 1] > self.threshold) & (data[:, 0] > -1)
np_boxes = data[expect_boxes, :]
results = [
[
item[0], # 'label':
item[1], # 'score':
item[2], # 'xmin':
item[3], # 'ymin':
item[4], # 'xmax':
item[5] # 'ymax':
]
for item in np_boxes
]
if len(results) > 0:
return True, np.array(results)
return False, None
def get(self, tlabel):
# 循环查找匹配的标签值
# 返回对应标签的个数,以及坐标列表
# TODO self.filter_box none judge
response = self.get_resp()
if response['code'] == 0:
ret, results = self.filter_box(response['data'])
if ret:
expect_boxes = (results[:, 0] == tlabel.value)
boxes = results[expect_boxes, :]
self.num = len(boxes)
self.pos = boxes[:, 2:] # [[x1 y1 x2 y2]]
return self.num, self.pos
return 0, []
def find(self, tlabel):
# 遍历返回的列表,有对应标签则返回 True
response = self.get_resp()
if response['code'] == 0:
ret, results = self.filter_box(response['data'])
if ret:
expect_boxes = (results[:, 0] == tlabel.value)
boxes = results[expect_boxes, :]
if len(boxes) != 0:
return True
return False
def aim_left(self, tlabel):
# 如果标签存在,则返回列表中位置最靠左的目标框和中心的偏移值
response = self.get_resp()
if response['code'] == 0:
ret, results = self.filter_box(response['data'])
if ret:
expect_boxes = (results[:, 0] == tlabel.value)
boxes = results[expect_boxes, :]
if len(boxes) == 0:
return (False, )
xmin_values = boxes[:, 2] # xmin
xmin_index = np.argmin(xmin_values)
error = (boxes[xmin_index][4] + boxes[xmin_index][2] - self.img_size[0]) / 2
return (True, error)
return (False, )
def aim_right(self, tlabel):
# 如果标签存在,则返回列表中位置最靠右的目标框和中心的偏移值
response = self.get_resp()
if response['code'] == 0:
ret, results = self.filter_box(response['data'])
if ret:
expect_boxes = (results[:, 0] == tlabel.value)
boxes = results[expect_boxes, :]
if len(boxes) == 0:
return (False, )
xmax_values = boxes[:, 4] # xmax
xmax_index = np.argmax(xmax_values)
error = (boxes[xmax_index][4] + boxes[xmax_index][2] - self.img_size[0]) / 2
return (True, error)
return (False, )
def aim_near(self, tlabel):
# 如果标签存在,则返回列表中位置最近的目标框和中心的偏移值
response = self.get_resp()
if response['code'] == 0:
ret, results = self.filter_box(response['data'])
if ret:
expect_boxes = (results[:, 0] == tlabel.value)
boxes = results[expect_boxes, :]
if len(boxes) == 0:
return (False, 0)
center_x_values = np.abs(boxes[:, 2] + boxes[:, 4] - self.img_size[0])
center_x_index = np.argmin(center_x_values)
error = (boxes[center_x_index][4] + boxes[center_x_index][2] - self.img_size[0]) / 2
return (True, error+15)
return (False, 0)
# class Calibrate:
# def __init__(self,by_cmd):
# # 车控制对象初始化
# self.by_cmd = by_cmd
# def aim(self,error):
# self.by_cmd.send_distance_x(error,)
if __name__ == '__main__':
obj = label_filter(None)
# results = obj.filter_box(resp['data'])
# expect_boxes = (results[:, 0] == tlabel.SPILLAR.value)
# np_boxes = results[expect_boxes, :]
# print(np_boxes[:, 2:])
# print(len(np_boxes))
print(obj.find(tlabel.BBALL))
print(obj.aim_left(tlabel.BBALL))
print(obj.aim_right(tlabel.BBALL))
print(obj.aim_near(tlabel.BBALL))
print(obj.get(tlabel.HOSPITAL))