171 lines
6.0 KiB
Python
171 lines
6.0 KiB
Python
|
|
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
|
||
|
|
# All rights reserved.
|
||
|
|
#
|
||
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
||
|
|
|
||
|
|
"""Script to play a checkpoint if an RL agent from RSL-RL."""
|
||
|
|
|
||
|
|
"""Launch Isaac Sim Simulator first."""
|
||
|
|
|
||
|
|
import argparse
|
||
|
|
|
||
|
|
from isaaclab.app import AppLauncher
|
||
|
|
|
||
|
|
# local imports
|
||
|
|
import cli_args # isort: skip
|
||
|
|
|
||
|
|
# add argparse arguments
|
||
|
|
parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.")
|
||
|
|
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
|
||
|
|
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
|
||
|
|
parser.add_argument(
|
||
|
|
"--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
|
||
|
|
)
|
||
|
|
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
|
||
|
|
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
|
||
|
|
parser.add_argument(
|
||
|
|
"--use_pretrained_checkpoint",
|
||
|
|
action="store_true",
|
||
|
|
help="Use the pre-trained checkpoint from Nucleus.",
|
||
|
|
)
|
||
|
|
parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.")
|
||
|
|
# append RSL-RL cli arguments
|
||
|
|
cli_args.add_rsl_rl_args(parser)
|
||
|
|
# append AppLauncher cli args
|
||
|
|
AppLauncher.add_app_launcher_args(parser)
|
||
|
|
args_cli = parser.parse_args()
|
||
|
|
# always enable cameras to record video
|
||
|
|
if args_cli.video:
|
||
|
|
args_cli.enable_cameras = True
|
||
|
|
|
||
|
|
# launch omniverse app
|
||
|
|
app_launcher = AppLauncher(args_cli)
|
||
|
|
simulation_app = app_launcher.app
|
||
|
|
|
||
|
|
"""Rest everything follows."""
|
||
|
|
|
||
|
|
import gymnasium as gym
|
||
|
|
import os
|
||
|
|
import time
|
||
|
|
import torch
|
||
|
|
|
||
|
|
from rsl_rl.runners import OnPolicyRunner
|
||
|
|
|
||
|
|
from isaaclab.envs import DirectMARLEnv, multi_agent_to_single_agent
|
||
|
|
from isaaclab.utils.assets import retrieve_file_path
|
||
|
|
from isaaclab.utils.dict import print_dict
|
||
|
|
from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint
|
||
|
|
|
||
|
|
from isaaclab_rl.rsl_rl import RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper, export_policy_as_jit, export_policy_as_onnx
|
||
|
|
|
||
|
|
import isaaclab_tasks # noqa: F401
|
||
|
|
from isaaclab_tasks.utils import get_checkpoint_path, parse_env_cfg
|
||
|
|
|
||
|
|
import FLEXR_v0.tasks # noqa: F401
|
||
|
|
|
||
|
|
|
||
|
|
def main():
|
||
|
|
"""Play with RSL-RL agent."""
|
||
|
|
# parse configuration
|
||
|
|
env_cfg = parse_env_cfg(
|
||
|
|
args_cli.task, device=args_cli.device, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric
|
||
|
|
)
|
||
|
|
agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli)
|
||
|
|
|
||
|
|
# specify directory for logging experiments
|
||
|
|
log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name)
|
||
|
|
log_root_path = os.path.abspath(log_root_path)
|
||
|
|
print(f"[INFO] Loading experiment from directory: {log_root_path}")
|
||
|
|
if args_cli.use_pretrained_checkpoint:
|
||
|
|
resume_path = get_published_pretrained_checkpoint("rsl_rl", args_cli.task)
|
||
|
|
if not resume_path:
|
||
|
|
print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.")
|
||
|
|
return
|
||
|
|
elif args_cli.checkpoint:
|
||
|
|
resume_path = retrieve_file_path(args_cli.checkpoint)
|
||
|
|
else:
|
||
|
|
resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint)
|
||
|
|
|
||
|
|
log_dir = os.path.dirname(resume_path)
|
||
|
|
|
||
|
|
# create isaac environment
|
||
|
|
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
|
||
|
|
|
||
|
|
# convert to single-agent instance if required by the RL algorithm
|
||
|
|
if isinstance(env.unwrapped, DirectMARLEnv):
|
||
|
|
env = multi_agent_to_single_agent(env)
|
||
|
|
|
||
|
|
# wrap for video recording
|
||
|
|
if args_cli.video:
|
||
|
|
video_kwargs = {
|
||
|
|
"video_folder": os.path.join(log_dir, "videos", "play"),
|
||
|
|
"step_trigger": lambda step: step == 0,
|
||
|
|
"video_length": args_cli.video_length,
|
||
|
|
"disable_logger": True,
|
||
|
|
}
|
||
|
|
print("[INFO] Recording videos during training.")
|
||
|
|
print_dict(video_kwargs, nesting=4)
|
||
|
|
env = gym.wrappers.RecordVideo(env, **video_kwargs)
|
||
|
|
|
||
|
|
# wrap around environment for rsl-rl
|
||
|
|
env = RslRlVecEnvWrapper(env, clip_actions=agent_cfg.clip_actions)
|
||
|
|
|
||
|
|
print(f"[INFO]: Loading model checkpoint from: {resume_path}")
|
||
|
|
# load previously trained model
|
||
|
|
ppo_runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device)
|
||
|
|
ppo_runner.load(resume_path)
|
||
|
|
|
||
|
|
# obtain the trained policy for inference
|
||
|
|
policy = ppo_runner.get_inference_policy(device=env.unwrapped.device)
|
||
|
|
|
||
|
|
# extract the neural network module
|
||
|
|
# we do this in a try-except to maintain backwards compatibility.
|
||
|
|
try:
|
||
|
|
# version 2.3 onwards
|
||
|
|
policy_nn = ppo_runner.alg.policy
|
||
|
|
except AttributeError:
|
||
|
|
# version 2.2 and below
|
||
|
|
policy_nn = ppo_runner.alg.actor_critic
|
||
|
|
|
||
|
|
# export policy to onnx/jit
|
||
|
|
export_model_dir = os.path.join(os.path.dirname(resume_path), "exported")
|
||
|
|
export_policy_as_jit(policy_nn, ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.pt")
|
||
|
|
export_policy_as_onnx(
|
||
|
|
policy_nn, normalizer=ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.onnx"
|
||
|
|
)
|
||
|
|
|
||
|
|
dt = env.unwrapped.step_dt
|
||
|
|
|
||
|
|
# reset environment
|
||
|
|
obs, _ = env.get_observations()
|
||
|
|
timestep = 0
|
||
|
|
# simulate environment
|
||
|
|
while simulation_app.is_running():
|
||
|
|
start_time = time.time()
|
||
|
|
# run everything in inference mode
|
||
|
|
with torch.inference_mode():
|
||
|
|
# agent stepping
|
||
|
|
actions = policy(obs)
|
||
|
|
# env stepping
|
||
|
|
obs, _, _, _ = env.step(actions)
|
||
|
|
if args_cli.video:
|
||
|
|
timestep += 1
|
||
|
|
# Exit the play loop after recording one video
|
||
|
|
if timestep == args_cli.video_length:
|
||
|
|
break
|
||
|
|
|
||
|
|
# time delay for real-time evaluation
|
||
|
|
sleep_time = dt - (time.time() - start_time)
|
||
|
|
if args_cli.real_time and sleep_time > 0:
|
||
|
|
time.sleep(sleep_time)
|
||
|
|
|
||
|
|
# close the simulator
|
||
|
|
env.close()
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
# run the main function
|
||
|
|
main()
|
||
|
|
# close sim app
|
||
|
|
simulation_app.close()
|