initial commit

This commit is contained in:
CaoWangrenbo
2025-06-14 21:18:24 +08:00
commit b03507ab4e
35 changed files with 2349 additions and 0 deletions

170
scripts/rsl_rl/play.py Normal file
View File

@@ -0,0 +1,170 @@
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to play a checkpoint if an RL agent from RSL-RL."""
"""Launch Isaac Sim Simulator first."""
import argparse
from isaaclab.app import AppLauncher
# local imports
import cli_args # isort: skip
# add argparse arguments
parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.")
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
parser.add_argument(
"--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
)
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument(
"--use_pretrained_checkpoint",
action="store_true",
help="Use the pre-trained checkpoint from Nucleus.",
)
parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.")
# append RSL-RL cli arguments
cli_args.add_rsl_rl_args(parser)
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
args_cli = parser.parse_args()
# always enable cameras to record video
if args_cli.video:
args_cli.enable_cameras = True
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import os
import time
import torch
from rsl_rl.runners import OnPolicyRunner
from isaaclab.envs import DirectMARLEnv, multi_agent_to_single_agent
from isaaclab.utils.assets import retrieve_file_path
from isaaclab.utils.dict import print_dict
from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint
from isaaclab_rl.rsl_rl import RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper, export_policy_as_jit, export_policy_as_onnx
import isaaclab_tasks # noqa: F401
from isaaclab_tasks.utils import get_checkpoint_path, parse_env_cfg
import FLEXR_v0.tasks # noqa: F401
def main():
"""Play with RSL-RL agent."""
# parse configuration
env_cfg = parse_env_cfg(
args_cli.task, device=args_cli.device, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric
)
agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli)
# specify directory for logging experiments
log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name)
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Loading experiment from directory: {log_root_path}")
if args_cli.use_pretrained_checkpoint:
resume_path = get_published_pretrained_checkpoint("rsl_rl", args_cli.task)
if not resume_path:
print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.")
return
elif args_cli.checkpoint:
resume_path = retrieve_file_path(args_cli.checkpoint)
else:
resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint)
log_dir = os.path.dirname(resume_path)
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_dir, "videos", "play"),
"step_trigger": lambda step: step == 0,
"video_length": args_cli.video_length,
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs)
# wrap around environment for rsl-rl
env = RslRlVecEnvWrapper(env, clip_actions=agent_cfg.clip_actions)
print(f"[INFO]: Loading model checkpoint from: {resume_path}")
# load previously trained model
ppo_runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device)
ppo_runner.load(resume_path)
# obtain the trained policy for inference
policy = ppo_runner.get_inference_policy(device=env.unwrapped.device)
# extract the neural network module
# we do this in a try-except to maintain backwards compatibility.
try:
# version 2.3 onwards
policy_nn = ppo_runner.alg.policy
except AttributeError:
# version 2.2 and below
policy_nn = ppo_runner.alg.actor_critic
# export policy to onnx/jit
export_model_dir = os.path.join(os.path.dirname(resume_path), "exported")
export_policy_as_jit(policy_nn, ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.pt")
export_policy_as_onnx(
policy_nn, normalizer=ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.onnx"
)
dt = env.unwrapped.step_dt
# reset environment
obs, _ = env.get_observations()
timestep = 0
# simulate environment
while simulation_app.is_running():
start_time = time.time()
# run everything in inference mode
with torch.inference_mode():
# agent stepping
actions = policy(obs)
# env stepping
obs, _, _, _ = env.step(actions)
if args_cli.video:
timestep += 1
# Exit the play loop after recording one video
if timestep == args_cli.video_length:
break
# time delay for real-time evaluation
sleep_time = dt - (time.time() - start_time)
if args_cli.real_time and sleep_time > 0:
time.sleep(sleep_time)
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()