# Copyright (c) 2022-2025, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to play a checkpoint if an RL agent from RL-Games.""" """Launch Isaac Sim Simulator first.""" import argparse from isaaclab.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Play a checkpoint of an RL agent from RL-Games.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.") parser.add_argument( "--use_pretrained_checkpoint", action="store_true", help="Use the pre-trained checkpoint from Nucleus.", ) parser.add_argument( "--use_last_checkpoint", action="store_true", help="When no checkpoint provided, use the last saved model. Otherwise use the best saved model.", ) parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # always enable cameras to record video if args_cli.video: args_cli.enable_cameras = True # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import math import os import time import torch from rl_games.common import env_configurations, vecenv from rl_games.common.player import BasePlayer from rl_games.torch_runner import Runner from isaaclab.envs import DirectMARLEnv, multi_agent_to_single_agent from isaaclab.utils.assets import retrieve_file_path from isaaclab.utils.dict import print_dict from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint from isaaclab_rl.rl_games import RlGamesGpuEnv, RlGamesVecEnvWrapper import isaaclab_tasks # noqa: F401 from isaaclab_tasks.utils import get_checkpoint_path, load_cfg_from_registry, parse_env_cfg import FLEXR_v0.tasks # noqa: F401 def main(): """Play with RL-Games agent.""" # parse env configuration env_cfg = parse_env_cfg( args_cli.task, device=args_cli.device, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) agent_cfg = load_cfg_from_registry(args_cli.task, "rl_games_cfg_entry_point") # specify directory for logging experiments log_root_path = os.path.join("logs", "rl_games", agent_cfg["params"]["config"]["name"]) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Loading experiment from directory: {log_root_path}") # find checkpoint if args_cli.use_pretrained_checkpoint: resume_path = get_published_pretrained_checkpoint("rl_games", args_cli.task) if not resume_path: print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.") return elif args_cli.checkpoint is None: # specify directory for logging runs run_dir = agent_cfg["params"]["config"].get("full_experiment_name", ".*") # specify name of checkpoint if args_cli.use_last_checkpoint: checkpoint_file = ".*" else: # this loads the best checkpoint checkpoint_file = f"{agent_cfg['params']['config']['name']}.pth" # get path to previous checkpoint resume_path = get_checkpoint_path(log_root_path, run_dir, checkpoint_file, other_dirs=["nn"]) else: resume_path = retrieve_file_path(args_cli.checkpoint) log_dir = os.path.dirname(os.path.dirname(resume_path)) # wrap around environment for rl-games rl_device = agent_cfg["params"]["config"]["device"] clip_obs = agent_cfg["params"]["env"].get("clip_observations", math.inf) clip_actions = agent_cfg["params"]["env"].get("clip_actions", math.inf) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # convert to single-agent instance if required by the RL algorithm if isinstance(env.unwrapped, DirectMARLEnv): env = multi_agent_to_single_agent(env) # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_root_path, log_dir, "videos", "play"), "step_trigger": lambda step: step == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for rl-games env = RlGamesVecEnvWrapper(env, rl_device, clip_obs, clip_actions) # register the environment to rl-games registry # note: in agents configuration: environment name must be "rlgpu" vecenv.register( "IsaacRlgWrapper", lambda config_name, num_actors, **kwargs: RlGamesGpuEnv(config_name, num_actors, **kwargs) ) env_configurations.register("rlgpu", {"vecenv_type": "IsaacRlgWrapper", "env_creator": lambda **kwargs: env}) # load previously trained model agent_cfg["params"]["load_checkpoint"] = True agent_cfg["params"]["load_path"] = resume_path print(f"[INFO]: Loading model checkpoint from: {agent_cfg['params']['load_path']}") # set number of actors into agent config agent_cfg["params"]["config"]["num_actors"] = env.unwrapped.num_envs # create runner from rl-games runner = Runner() runner.load(agent_cfg) # obtain the agent from the runner agent: BasePlayer = runner.create_player() agent.restore(resume_path) agent.reset() dt = env.unwrapped.step_dt # reset environment obs = env.reset() if isinstance(obs, dict): obs = obs["obs"] timestep = 0 # required: enables the flag for batched observations _ = agent.get_batch_size(obs, 1) # initialize RNN states if used if agent.is_rnn: agent.init_rnn() # simulate environment # note: We simplified the logic in rl-games player.py (:func:`BasePlayer.run()`) function in an # attempt to have complete control over environment stepping. However, this removes other # operations such as masking that is used for multi-agent learning by RL-Games. while simulation_app.is_running(): start_time = time.time() # run everything in inference mode with torch.inference_mode(): # convert obs to agent format obs = agent.obs_to_torch(obs) # agent stepping actions = agent.get_action(obs, is_deterministic=agent.is_deterministic) # env stepping obs, _, dones, _ = env.step(actions) # perform operations for terminated episodes if len(dones) > 0: # reset rnn state for terminated episodes if agent.is_rnn and agent.states is not None: for s in agent.states: s[:, dones, :] = 0.0 if args_cli.video: timestep += 1 # Exit the play loop after recording one video if timestep == args_cli.video_length: break # time delay for real-time evaluation sleep_time = dt - (time.time() - start_time) if args_cli.real_time and sleep_time > 0: time.sleep(sleep_time) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()