21
README.md
21
README.md
@@ -1,19 +1,17 @@
|
||||
# SwiftFormer
|
||||
### **SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications**
|
||||
|
||||
[Abdelrahman Shaker](https://scholar.google.com/citations?hl=en&user=eEz4Wu4AAAAJ),
|
||||
[Muhammad Maaz](https://scholar.google.com/citations?user=vTy9Te8AAAAJ&hl=en&authuser=1&oi=sra),
|
||||
[Hanoona Rasheed](https://scholar.google.com/citations?user=yhDdEuEAAAAJ&hl=en&authuser=1&oi=sra),
|
||||
[Salman Khan](https://salman-h-khan.github.io),
|
||||
[Ming-Hsuan Yang](https://scholar.google.com/citations?user=p9-ohHsAAAAJ&hl=en),
|
||||
and [Fahad Shahbaz Khan](https://scholar.google.es/citations?user=zvaeYnUAAAAJ&hl=en)
|
||||

|
||||
[Abdelrahman Shaker](https://scholar.google.com/citations?hl=en&user=eEz4Wu4AAAAJ)<sup>*1</sup>, [Muhammad Maaz](https://scholar.google.com/citations?user=vTy9Te8AAAAJ&hl=en&authuser=1&oi=sra)<sup>1</sup>, [Hanoona Rasheed](https://scholar.google.com/citations?user=yhDdEuEAAAAJ&hl=en&authuser=1&oi=sra)<sup>1</sup>, [Salman Khan](https://salman-h-khan.github.io/)<sup>1</sup>, [Ming-Hsuan Yang](https://scholar.google.com/citations?user=p9-ohHsAAAAJ&hl=en)<sup>2,3</sup> and [Fahad Shahbaz Khan](https://scholar.google.es/citations?user=zvaeYnUAAAAJ&hl=en)<sup>1,4</sup>
|
||||
|
||||
Mohamed Bin Zayed University of Artificial Intelligence<sup>1</sup>, University of California Merced<sup>2</sup>, Google Research<sup>3</sup>, Linkoping University<sup>4</sup>
|
||||
<!-- [](site_url) -->
|
||||
[](https://arxiv.org/abs/2303.15446)
|
||||
<!-- [](youtube_link) -->
|
||||
<!-- [](presentation) -->
|
||||
|
||||
## :rocket: News
|
||||
* **(Jul 14, 2023):** SwiftFormer has been accepted at ICCV 2023. :fire::fire:
|
||||
* **(Mar 27, 2023):** Classification training and evaluation codes along with pre-trained models are released.
|
||||
|
||||
<hr />
|
||||
@@ -47,10 +45,10 @@ Self-attention has become a defacto choice for capturing global context in vario
|
||||
|
||||
| Model | Top-1 accuracy | #params | GMACs | Latency | Ckpt | CoreML|
|
||||
|:---------------|:----:|:---:|:--:|:--:|:--:|:--:|
|
||||
| SwiftFormer-XS | 75.7% | 3.5M | 0.4G | 0.7ms | [XS](https://drive.google.com/file/d/15Ils-U96pQePXQXx2MpmaI-yAceFAr2x/view?usp=sharing) | [XS](https://drive.google.com/file/d/1tZVxtbtAZoLLoDc5qqoUGulilksomLeK/view?usp=sharing) |
|
||||
| SwiftFormer-S | 78.5% | 6.1M | 1.0G | 0.8ms | [S](https://drive.google.com/file/d/1_0eWwgsejtS0bWGBQS3gwAtYjXdPRGlu/view?usp=sharing) | [S](https://drive.google.com/file/d/13EOCZmtvbMR2V6UjezSZnbBz2_-59Fva/view?usp=sharing) |
|
||||
| SwiftFormer-L1 | 80.9% | 12.1M | 1.6G | 1.1ms | [L1](https://drive.google.com/file/d/1jlwrwWQ0SQzDRc5adtWIwIut5d1g9EsM/view?usp=sharing) | [L1](https://drive.google.com/file/d/1c3VUsi4q7QQ2ykXVS2d4iCRL478fWF3e/view?usp=sharing) |
|
||||
| SwiftFormer-L3 | 83.0% | 28.5M | 4.0G | 1.9ms | [L3](https://drive.google.com/file/d/1ypBcjx04ShmPYRhhjBRubiVjbExUgSa7/view?usp=sharing) | [L3](https://drive.google.com/file/d/1svahgIjh7da781jHOHjX58mtzCzYXSsJ/view?usp=sharing) |
|
||||
| SwiftFormer-XS | 75.7% | 3.5M | 0.6G | 0.7ms | [XS](https://drive.google.com/file/d/12RchxzyiJrtZS-2Bur9k4wcRQMItA43S/view?usp=sharing) | [XS](https://drive.google.com/file/d/1bkAP_BD6CdDqlbQsStZhLa0ST2NZTIvH/view?usp=sharing) |
|
||||
| SwiftFormer-S | 78.5% | 6.1M | 1.0G | 0.8ms | [S](https://drive.google.com/file/d/1awpcXAaHH38WaHrOmUM8updxQazUZ3Nb/view?usp=sharing) | [S](https://drive.google.com/file/d/1qNAhecWIeQ1YJotWhbnLTCR5Uv1zBaf1/view?usp=sharing) |
|
||||
| SwiftFormer-L1 | 80.9% | 12.1M | 1.6G | 1.1ms | [L1](https://drive.google.com/file/d/1SDzauVmpR5uExkOv3ajxdwFnP-Buj9Uo/view?usp=sharing) | [L1](https://drive.google.com/file/d/1CowZE7-lbxz93uwXqefe-HxGOHUdvX_a/view?usp=sharing) |
|
||||
| SwiftFormer-L3 | 83.0% | 28.5M | 4.0G | 1.9ms | [L3](https://drive.google.com/file/d/1DAxMe6FlnZBBIpR-HYIDfFLWJzIgiF0Y/view?usp=sharing) | [L3](https://drive.google.com/file/d/1SO3bRWd9oWJemy-gpYUcwP-B4bJ-dsdg/view?usp=sharing) |
|
||||
|
||||
|
||||
## Detection and Segmentation Qualitative Results
|
||||
@@ -77,6 +75,7 @@ conda activate swiftformer
|
||||
|
||||
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
pip install timm
|
||||
pip install coremltools==5.2.0
|
||||
```
|
||||
|
||||
### Data preparation
|
||||
@@ -98,7 +97,7 @@ To train SwiftFormer models on an 8-GPU machine:
|
||||
sh dist_train.sh /path/to/imagenet 8
|
||||
```
|
||||
|
||||
Note: specify which model command you want to run in the script. To reproduce the results of the paper, use 16-GPU machine with batch-size of 128 or 8-GPU machine with batch size of 256. Auto Augmentation, CutMix, MixUp are disabled for SwiftFormer-XS only.
|
||||
Note: specify which model command you want to run in the script. To reproduce the results of the paper, use 16-GPU machine with batch-size of 128 or 8-GPU machine with batch size of 256. Auto Augmentation, CutMix, MixUp are disabled for SwiftFormer-XS, and CutMix, MixUp are disabled for SwiftFormer-S.
|
||||
|
||||
### Multi-node training
|
||||
|
||||
|
||||
@@ -4,18 +4,18 @@
|
||||
IMAGENET_PATH=$1
|
||||
nGPUs=$2
|
||||
|
||||
## SwiftFormer-XS
|
||||
## SwiftFormer-XS training
|
||||
python -m torch.distributed.launch --nproc_per_node=$nGPUs --use_env main.py --model SwiftFormer_XS --aa="" --mixup 0 --cutmix 0 --data-path "$IMAGENET_PATH" \
|
||||
--output_dir SwiftFormer_XS_results
|
||||
|
||||
## SwiftFormer-S
|
||||
python -m torch.distributed.launch --nproc_per_node=$nGPUs --use_env main.py --model SwiftFormer_S --data-path "$IMAGENET_PATH" \
|
||||
## SwiftFormer-S training
|
||||
python -m torch.distributed.launch --nproc_per_node=$nGPUs --use_env main.py --model SwiftFormer_S --mixup 0 --cutmix 0 --data-path "$IMAGENET_PATH" \
|
||||
--output_dir SwiftFormer_S_results
|
||||
|
||||
## SwiftFormer-L1
|
||||
## SwiftFormer-L1 training
|
||||
python -m torch.distributed.launch --nproc_per_node=$nGPUs --use_env main.py --model SwiftFormer_L1 --data-path "$IMAGENET_PATH" \
|
||||
--output_dir SwiftFormer_L1_results
|
||||
|
||||
## SwiftFormer-L3
|
||||
## SwiftFormer-L3 training
|
||||
python -m torch.distributed.launch --nproc_per_node=$nGPUs --use_env main.py --model SwiftFormer_L3 --data-path "$IMAGENET_PATH" \
|
||||
--output_dir SwiftFormer_L3_results
|
||||
|
||||
@@ -25,9 +25,6 @@ SwiftFormer_depth = {
|
||||
'l3': [4, 4, 12, 6],
|
||||
}
|
||||
|
||||
CoreMLConversion = False
|
||||
|
||||
|
||||
def stem(in_chs, out_chs):
|
||||
"""
|
||||
Stem Layer that is implemented by two layers of conv.
|
||||
@@ -144,8 +141,8 @@ class Mlp(nn.Module):
|
||||
class EfficientAdditiveAttnetion(nn.Module):
|
||||
"""
|
||||
Efficient Additive Attention module for SwiftFormer.
|
||||
Input: tensor in shape [B, C, H, W]
|
||||
Output: tensor in shape [B, C, H, W]
|
||||
Input: tensor in shape [B, N, D]
|
||||
Output: tensor in shape [B, N, D]
|
||||
"""
|
||||
|
||||
def __init__(self, in_dims=512, token_dim=256, num_heads=2):
|
||||
@@ -163,26 +160,23 @@ class EfficientAdditiveAttnetion(nn.Module):
|
||||
query = self.to_query(x)
|
||||
key = self.to_key(x)
|
||||
|
||||
if not CoreMLConversion:
|
||||
# torch.nn.functional.normalize is not supported by the ANE of iPhone devices.
|
||||
# Using this layer improves the accuracy by ~0.1-0.2%
|
||||
query = torch.nn.functional.normalize(query, dim=-1)
|
||||
key = torch.nn.functional.normalize(key, dim=-1)
|
||||
query = torch.nn.functional.normalize(query, dim=-1) #BxNxD
|
||||
key = torch.nn.functional.normalize(key, dim=-1) #BxNxD
|
||||
|
||||
query_weight = query @ self.w_g
|
||||
A = query_weight * self.scale_factor
|
||||
query_weight = query @ self.w_g # BxNx1 (BxNxD @ Dx1)
|
||||
A = query_weight * self.scale_factor # BxNx1
|
||||
|
||||
A = A.softmax(dim=-1)
|
||||
A = torch.nn.functional.normalize(A, dim=1) # BxNx1
|
||||
|
||||
G = torch.sum(A * query, dim=1)
|
||||
G = torch.sum(A * query, dim=1) # BxD
|
||||
|
||||
G = einops.repeat(
|
||||
G, "b d -> b repeat d", repeat=key.shape[1]
|
||||
)
|
||||
) # BxNxD
|
||||
|
||||
out = self.Proj(G * key) + query
|
||||
out = self.Proj(G * key) + query #BxNxD
|
||||
|
||||
out = self.final(out)
|
||||
out = self.final(out) # BxNxD
|
||||
|
||||
return out
|
||||
|
||||
@@ -505,3 +499,4 @@ def SwiftFormer_L3(pretrained=False, **kwargs):
|
||||
**kwargs)
|
||||
model.default_cfg = _cfg(crop_pct=0.9)
|
||||
return model
|
||||
|
||||
|
||||
@@ -15,9 +15,8 @@ srun python main.py --model "$MODEL" \
|
||||
--data-path "$IMAGENET_PATH" \
|
||||
--batch-size 128 \
|
||||
--epochs 300 \
|
||||
--aa="" --mixup 0 --cutmix 0
|
||||
|
||||
|
||||
## Note: Disable aa, mixup, and cutmix for SwiftFormer-XS only
|
||||
## Note: Disable aa, mixup, and cutmix for SwiftFormer-XS, and disable mixup, and cutmix for SwiftFormer-S.
|
||||
## By default, this script requests total 16 GPUs on 4 nodes. The batch size per gpu is set to 128,
|
||||
## tha sums to 128*16=2048 in total.
|
||||
Reference in New Issue
Block a user