Compare commits

..

4 Commits

5 changed files with 133 additions and 596 deletions

View File

@@ -46,6 +46,14 @@ def denormalize(tensor):
tensor = tensor * 255
return tensor.clamp(0, 255)
def minmax_denormalize(tensor):
tensor_min = tensor.min()
tensor_max = tensor.max()
tensor = (tensor - tensor_min) / (tensor_max - tensor_min)
# tensor = tensor*2-1
tensor = tensor*255
return tensor.clamp(0, 255)
def calculate_metrics(pred, target, debug=False):
"""
@@ -67,28 +75,16 @@ def calculate_metrics(pred, target, debug=False):
if target_np.ndim == 3:
target_np = target_np.squeeze(0)
if debug:
print(f"[DEBUG] pred_np range: [{pred_np.min():.2f}, {pred_np.max():.2f}], mean: {pred_np.mean():.2f}")
print(f"[DEBUG] target_np range: [{target_np.min():.2f}, {target_np.max():.2f}], mean: {target_np.mean():.2f}")
print(f"[DEBUG] pred_np sample values (first 5): {pred_np.ravel()[:5]}")
# if debug:
# print(f"[DEBUG] pred_np range: [{pred_np.min():.2f}, {pred_np.max():.2f}], mean: {pred_np.mean():.2f}")
# print(f"[DEBUG] target_np range: [{target_np.min():.2f}, {target_np.max():.2f}], mean: {target_np.mean():.2f}")
# print(f"[DEBUG] pred_np sample values (first 5): {pred_np.ravel()[:5]}")
# 计算MSE - 修复错误的tmp公式
# 原错误公式: tmp = 1 - (pred_np - target_np) / 255 * 2
# 正确公式: 直接计算像素差的平方
mse = np.mean((pred_np - target_np) ** 2)
# 同时计算错误公式的MSE用于对比
tmp = 1 - (pred_np - target_np) / 255 * 2
wrong_mse = np.mean(tmp**2)
if debug:
print(f"[DEBUG] Correct MSE: {mse:.6f}, Wrong MSE (tmp formula): {wrong_mse:.6f}")
# 计算SSIM (数据范围0-255)
data_range = 255.0
ssim_value = ssim(pred_np, target_np, data_range=data_range)
# 计算PSNR
psnr_value = psnr(target_np, pred_np, data_range=data_range)
return mse, ssim_value, psnr_value
@@ -134,14 +130,8 @@ def save_comparison_figure(input_frames, target_frame, pred_frame, save_path,
ax.set_title('Predicted')
ax.axis('off')
# debug print - 改进为更有信息量的输出
if isinstance(pred_frame, np.ndarray):
print(f"[DEBUG IMAGE] Pred frame shape: {pred_frame.shape}, range: [{pred_frame.min():.2f}, {pred_frame.max():.2f}], mean: {pred_frame.mean():.2f}")
# 检查是否有大量值在127.5附近
mask_near_127_5 = np.abs(pred_frame - 127.5) < 1.0
percent_near_127_5 = np.mean(mask_near_127_5) * 100
print(f"[DEBUG IMAGE] Percentage of values near 127.5 (±1.0): {percent_near_127_5:.2f}%")
else:
#debug print
print(target_frame)
print(pred_frame)
plt.tight_layout()
@@ -161,8 +151,8 @@ def evaluate_model(model, data_loader, device, args):
metrics_dict: 包含所有指标的字典
sample_results: 示例结果用于可视化
"""
# model.eval()
model.train() # 临时使用训练模式
model.eval()
# model.train() # 临时使用训练模式
# 初始化指标累加器
total_mse = 0.0
@@ -183,10 +173,11 @@ def evaluate_model(model, data_loader, device, args):
target_frames = target_frames.to(device, non_blocking=True)
# 前向传播
pred_frames, _ = model(input_frames)
pred_frames = model(input_frames)
# 反归一化用于指标计算
pred_denorm = denormalize(pred_frames) # [B, 1, H, W]
# pred_denorm = minmax_denormalize(pred_frames) # [B, 1, H, W]
pred_denorm = denormalize(pred_frames)
target_denorm = denormalize(target_frames) # [B, 1, H, W]
batch_size = input_frames.size(0)
@@ -202,13 +193,13 @@ def evaluate_model(model, data_loader, device, args):
# 对第一个样本启用调试
debug_mode = (batch_idx == 0 and i == 0 and total_samples == 0)
if debug_mode:
print(f"[DEBUG] Raw pred_frames range: [{pred_frames.min():.4f}, {pred_frames.max():.4f}], mean: {pred_frames.mean():.4f}")
print(f"[DEBUG] Raw target_frames range: [{target_frames.min():.4f}, {target_frames.max():.4f}], mean: {target_frames.mean():.4f}")
print(f"[DEBUG] Pred_denorm range: [{pred_denorm.min():.2f}, {pred_denorm.max():.2f}], mean: {pred_denorm.mean():.2f}")
print(f"[DEBUG] Target_denorm range: [{target_denorm.min():.2f}, {target_denorm.max():.2f}], mean: {target_denorm.mean():.2f}")
# if debug_mode:
# print(f"[DEBUG] Raw pred_frames range: [{pred_frames.min():.4f}, {pred_frames.max():.4f}], mean: {pred_frames.mean():.4f}")
# print(f"[DEBUG] Raw target_frames range: [{target_frames.min():.4f}, {target_frames.max():.4f}], mean: {target_frames.mean():.4f}")
# print(f"[DEBUG] Pred_denorm range: [{pred_denorm.min():.2f}, {pred_denorm.max():.2f}], mean: {pred_denorm.mean():.2f}")
# print(f"[DEBUG] Target_denorm range: [{target_denorm.min():.2f}, {target_denorm.max():.2f}], mean: {target_denorm.mean():.2f}")
mse, ssim_value, psnr_value = calculate_metrics(pred_i, target_i, debug=debug_mode)
mse, ssim_value, psnr_value = calculate_metrics(pred_i, target_i, debug=False)
total_mse += mse
total_ssim += ssim_value
@@ -309,8 +300,6 @@ def main(args):
print(f"创建模型: {args.model}")
model_kwargs = {
'num_frames': args.num_frames,
'use_representation_head': args.use_representation_head,
'representation_dim': args.representation_dim,
}
if args.model == 'SwiftFormerTemporal_XS':
@@ -335,10 +324,6 @@ def main(args):
except (pickle.UnpicklingError, TypeError) as e:
print(f"使用weights_only=False加载失败: {e}")
print("尝试使用torch.serialization.add_safe_globals...")
from argparse import Namespace
# 添加安全全局变量
torch.serialization.add_safe_globals([Namespace])
checkpoint = torch.load(args.resume, map_location='cpu')
# 处理状态字典(可能包含'module.'前缀)
if 'model' in checkpoint:
@@ -462,10 +447,6 @@ def get_args_parser():
# 模型参数
parser.add_argument('--model', default='SwiftFormerTemporal_XS', type=str, metavar='MODEL',
help='要评估的模型名称')
parser.add_argument('--use-representation-head', action='store_true',
help='使用表示头进行姿态/速度预测')
parser.add_argument('--representation-dim', default=128, type=int,
help='表示向量的维度')
# 评估参数
parser.add_argument('--batch-size', default=16, type=int,

View File

@@ -20,17 +20,13 @@ from util import *
from models import *
from models.swiftformer_temporal import SwiftFormerTemporal_XS, SwiftFormerTemporal_S, SwiftFormerTemporal_L1, SwiftFormerTemporal_L3
from util.video_dataset import VideoFrameDataset
from util.frame_losses import MultiTaskLoss
# from util.frame_losses import MultiTaskLoss
# Try to import TensorBoard
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_AVAILABLE = True
except ImportError:
try:
from tensorboardX import SummaryWriter
TENSORBOARD_AVAILABLE = True
except ImportError:
TENSORBOARD_AVAILABLE = False
@@ -47,17 +43,12 @@ def get_args_parser():
help='Number of input frames (T)')
parser.add_argument('--frame-size', default=224, type=int,
help='Input frame size')
parser.add_argument('--max-interval', default=4, type=int,
parser.add_argument('--max-interval', default=10, type=int,
help='Maximum interval between consecutive frames')
# Model parameters
parser.add_argument('--model', default='SwiftFormerTemporal_XS', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--use-representation-head', action='store_true',
help='Use representation head for pose/velocity prediction')
parser.add_argument('--representation-dim', default=128, type=int,
help='Dimension of representation vector')
parser.add_argument('--use-skip', default=True, type=bool, help='using skip connections')
# Training parameters
parser.add_argument('--batch-size', default=32, type=int)
@@ -130,7 +121,7 @@ def get_args_parser():
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--num-workers', default=4, type=int)
parser.add_argument('--num-workers', default=16, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem')
@@ -211,9 +202,6 @@ def main(args):
print(f"Creating model: {args.model}")
model_kwargs = {
'num_frames': args.num_frames,
'use_representation_head': args.use_representation_head,
'representation_dim': args.representation_dim,
'use_skip': args.use_skip,
}
if args.model == 'SwiftFormerTemporal_XS':
@@ -262,7 +250,7 @@ def main(args):
super().__init__()
self.mse = nn.MSELoss()
def forward(self, pred_frame, target_frame, representations=None, temporal_indices=None):
def forward(self, pred_frame, target_frame, temporal_indices=None):
loss = self.mse(pred_frame, target_frame)
loss_dict = {'mse': loss}
return loss, loss_dict
@@ -276,7 +264,7 @@ def main(args):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
checkpoint = torch.load(args.resume, map_location='cpu', weights_only=False)
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
@@ -320,7 +308,7 @@ def main(args):
train_stats, global_step = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
optimizer, device, epoch, loss_scaler, args.clip_grad, args.clip_mode,
model_ema=model_ema, writer=writer,
global_step=global_step, args=args
)
@@ -328,7 +316,7 @@ def main(args):
lr_scheduler.step(epoch)
# Save checkpoint
if args.output_dir and (epoch % 2 == 0 or epoch == args.epochs - 1):
if args.output_dir and (epoch % 1 == 0 or epoch == args.epochs - 1):
checkpoint_path = output_dir / f'checkpoint_epoch{epoch}.pth'
utils.save_on_master({
'model': model_without_ddp.state_dict(),
@@ -368,7 +356,7 @@ def main(args):
def train_one_epoch(model, criterion, data_loader, optimizer, device, epoch, loss_scaler,
clip_grad=0, clip_mode='norm', model_ema=None, writer=None,
clip_grad=0.01, clip_mode='norm', model_ema=None, writer=None,
global_step=0, args=None, **kwargs):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
@@ -390,10 +378,10 @@ def train_one_epoch(model, criterion, data_loader, optimizer, device, epoch, los
# Forward pass
with torch.amp.autocast(device_type='cuda'):
pred_frames, representations = model(input_frames)
pred_frames = model(input_frames)
loss, loss_dict = criterion(
pred_frames, target_frames,
representations, temporal_indices
temporal_indices
)
loss_value = loss.item()
@@ -403,7 +391,6 @@ def train_one_epoch(model, criterion, data_loader, optimizer, device, epoch, los
optimizer.zero_grad()
# 在反向传播前保存梯度用于诊断
loss_scaler(loss, optimizer, clip_grad=clip_grad, clip_mode=clip_mode,
parameters=model.parameters())
@@ -426,14 +413,14 @@ def train_one_epoch(model, criterion, data_loader, optimizer, device, epoch, los
metric_logger.update(pred_std=pred_std)
metric_logger.update(grad_norm=total_grad_norm)
# 每50个批次打印一次BatchNorm统计
# # 每50个批次打印一次BatchNorm统计
if batch_idx % 50 == 0:
print(f"[诊断] 批次 {batch_idx}: 预测均值={pred_mean:.4f}, 预测标准差={pred_std:.4f}, 梯度范数={total_grad_norm:.4f}")
# 检查一个BatchNorm层的运行统计
for name, module in model.named_modules():
if isinstance(module, torch.nn.BatchNorm2d) and 'decoder.blocks.0.bn' in name:
print(f"[诊断] {name}: 运行均值={module.running_mean[0].item():.6f}, 运行方差={module.running_var[0].item():.6f}")
break
# # 检查一个BatchNorm层的运行统计
# for name, module in model.named_modules():
# if isinstance(module, torch.nn.BatchNorm2d) and 'decoder.blocks.0.bn' in name:
# print(f"[诊断] {name}: 运行均值={module.running_mean[0].item():.6f}, 运行方差={module.running_var[0].item():.6f}")
# break
# Log to TensorBoard
if writer is not None:
@@ -457,7 +444,7 @@ def train_one_epoch(model, criterion, data_loader, optimizer, device, epoch, los
if args is not None and getattr(args, 'log_images', False) and global_step % getattr(args, 'image_log_freq', 100) == 0:
with torch.no_grad():
# Take first sample from batch for visualization
pred_vis, _ = model(input_frames[:1])
pred_vis = model(input_frames[:1])
# Convert to appropriate format for TensorBoard
# Assuming frames are in [B, C, H, W] format
writer.add_images('train/input', input_frames[:1], global_step)
@@ -502,10 +489,10 @@ def evaluate(data_loader, model, criterion, device, writer=None, epoch=0):
# Compute output
with torch.amp.autocast(device_type='cuda'):
pred_frames, representations = model(input_frames)
pred_frames = model(input_frames)
loss, loss_dict = criterion(
pred_frames, target_frames,
representations, temporal_indices
temporal_indices
)
# 计算诊断指标
@@ -520,21 +507,21 @@ def evaluate(data_loader, model, criterion, device, writer=None, epoch=0):
metric_logger.update(target_mean=target_mean)
metric_logger.update(target_std=target_std)
# 第一个批次打印详细诊断信息
if batch_idx == 0:
print(f"[评估诊断] 批次 0:")
print(f" 预测范围: [{pred_frames.min().item():.4f}, {pred_frames.max().item():.4f}]")
print(f" 预测均值: {pred_mean:.4f}, 预测标准差: {pred_std:.4f}")
print(f" 目标范围: [{target_frames.min().item():.4f}, {target_frames.max().item():.4f}]")
print(f" 目标均值: {target_mean:.4f}, 目标标准差: {target_std:.4f}")
# # 第一个批次打印详细诊断信息
# if batch_idx == 0:
# print(f"[评估诊断] 批次 0:")
# print(f" 预测范围: [{pred_frames.min().item():.4f}, {pred_frames.max().item():.4f}]")
# print(f" 预测均值: {pred_mean:.4f}, 预测标准差: {pred_std:.4f}")
# print(f" 目标范围: [{target_frames.min().item():.4f}, {target_frames.max().item():.4f}]")
# print(f" 目标均值: {target_mean:.4f}, 目标标准差: {target_std:.4f}")
# 检查BatchNorm运行统计
for name, module in model.named_modules():
if isinstance(module, torch.nn.BatchNorm2d) and 'decoder.blocks.0.bn' in name:
print(f" {name}: 运行均值={module.running_mean[0].item():.6f}, 运行方差={module.running_var[0].item():.6f}")
if module.running_var[0].item() < 1e-6:
print(f" 警告: BatchNorm运行方差接近零!")
break
# # 检查BatchNorm运行统计
# for name, module in model.named_modules():
# if isinstance(module, torch.nn.BatchNorm2d) and 'decoder.blocks.0.bn' in name:
# print(f" {name}: 运行均值={module.running_mean[0].item():.6f}, 运行方差={module.running_var[0].item():.6f}")
# if module.running_var[0].item() < 1e-6:
# print(f" 警告: BatchNorm运行方差接近零!")
# break
# Update metrics
metric_logger.update(loss=loss.item())

View File

@@ -11,7 +11,7 @@ from timm.layers import DropPath, trunc_normal_
class DecoderBlock(nn.Module):
"""Upsampling block for frame prediction decoder with residual connections"""
"""Upsampling block for frame prediction decoder without residual connections"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=2, padding=1, output_padding=1):
super().__init__()
# 主路径:反卷积 + 两个卷积层
@@ -21,282 +21,97 @@ class DecoderBlock(nn.Module):
stride=stride,
padding=padding,
output_padding=output_padding,
bias=True # 用bias因为移除了BN
bias=False # 用bias因为使用BN
)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv1 = nn.Conv2d(out_channels, out_channels,
kernel_size=3, padding=1, bias=True)
kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels,
kernel_size=3, padding=1, bias=True)
kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
# 残差路径:如果需要改变通道数或空间尺寸
self.shortcut = nn.Identity()
if in_channels != out_channels or stride != 1:
# 使用1x1卷积调整通道数如果需要上采样则使用反卷积
if stride == 1:
self.shortcut = nn.Conv2d(in_channels, out_channels,
kernel_size=1, bias=True)
else:
self.shortcut = nn.ConvTranspose2d(
in_channels, out_channels,
kernel_size=1,
stride=stride,
padding=0,
output_padding=output_padding,
bias=True
)
# 使用LeakyReLU避免死亡神经元
self.activation = nn.LeakyReLU(0.2, inplace=True)
# 使用ReLU激活函数
self.activation = nn.ReLU(inplace=True)
# 初始化权重
self._init_weights()
def _init_weights(self):
# 初始化反卷积层
nn.init.kaiming_normal_(self.conv_transpose.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.conv_transpose.bias is not None:
nn.init.constant_(self.conv_transpose.bias, 0)
nn.init.kaiming_normal_(self.conv_transpose.weight, mode='fan_out', nonlinearity='relu')
# 初始化卷积层
nn.init.kaiming_normal_(self.conv1.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.conv1.bias is not None:
nn.init.constant_(self.conv1.bias, 0)
nn.init.kaiming_normal_(self.conv1.weight, mode='fan_out', nonlinearity='relu')
nn.init.kaiming_normal_(self.conv2.weight, mode='fan_out', nonlinearity='relu')
nn.init.kaiming_normal_(self.conv2.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.conv2.bias is not None:
nn.init.constant_(self.conv2.bias, 0)
# 初始化shortcut
if not isinstance(self.shortcut, nn.Identity):
if isinstance(self.shortcut, nn.Conv2d):
nn.init.kaiming_normal_(self.shortcut.weight, mode='fan_out', nonlinearity='leaky_relu')
elif isinstance(self.shortcut, nn.ConvTranspose2d):
nn.init.kaiming_normal_(self.shortcut.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.shortcut.bias is not None:
nn.init.constant_(self.shortcut.bias, 0)
# 初始化BN层使用默认初始化
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
identity = self.shortcut(x)
# 主路径
x = self.conv_transpose(x)
x = self.bn1(x)
x = self.activation(x)
x = self.conv1(x)
x = self.bn2(x)
x = self.activation(x)
x = self.conv2(x)
# 残差连接
x = x + identity
x = self.activation(x)
return x
class DecoderBlockWithSkip(nn.Module):
"""Decoder block with skip connection support"""
def __init__(self, in_channels, out_channels, skip_channels=0, kernel_size=3, stride=2, padding=1, output_padding=1):
super().__init__()
# 总输入通道 = 输入通道 + skip通道
total_in_channels = in_channels + skip_channels
# 主路径:反卷积 + 两个卷积层
self.conv_transpose = nn.ConvTranspose2d(
total_in_channels, out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
bias=True
)
self.conv1 = nn.Conv2d(out_channels, out_channels,
kernel_size=3, padding=1, bias=True)
self.conv2 = nn.Conv2d(out_channels, out_channels,
kernel_size=3, padding=1, bias=True)
# 残差路径:如果需要改变通道数或空间尺寸
self.shortcut = nn.Identity()
if total_in_channels != out_channels or stride != 1:
if stride == 1:
self.shortcut = nn.Conv2d(total_in_channels, out_channels,
kernel_size=1, bias=True)
else:
self.shortcut = nn.ConvTranspose2d(
total_in_channels, out_channels,
kernel_size=1,
stride=stride,
padding=0,
output_padding=output_padding,
bias=True
)
# 使用LeakyReLU避免死亡神经元
self.activation = nn.LeakyReLU(0.2, inplace=True)
# 初始化权重
self._init_weights()
def _init_weights(self):
# 初始化反卷积层
nn.init.kaiming_normal_(self.conv_transpose.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.conv_transpose.bias is not None:
nn.init.constant_(self.conv_transpose.bias, 0)
# 初始化卷积层
nn.init.kaiming_normal_(self.conv1.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.conv1.bias is not None:
nn.init.constant_(self.conv1.bias, 0)
nn.init.kaiming_normal_(self.conv2.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.conv2.bias is not None:
nn.init.constant_(self.conv2.bias, 0)
# 初始化shortcut
if not isinstance(self.shortcut, nn.Identity):
if isinstance(self.shortcut, nn.Conv2d):
nn.init.kaiming_normal_(self.shortcut.weight, mode='fan_out', nonlinearity='leaky_relu')
elif isinstance(self.shortcut, nn.ConvTranspose2d):
nn.init.kaiming_normal_(self.shortcut.weight, mode='fan_out', nonlinearity='leaky_relu')
if self.shortcut.bias is not None:
nn.init.constant_(self.shortcut.bias, 0)
def forward(self, x, skip_feature=None):
# 如果有skip feature将其与输入拼接
if skip_feature is not None:
# 确保skip特征的空间尺寸与x匹配
if skip_feature.shape[2:] != x.shape[2:]:
# 使用双线性插值进行上采样或下采样
skip_feature = torch.nn.functional.interpolate(
skip_feature,
size=x.shape[2:],
mode='bilinear',
align_corners=False
)
x = torch.cat([x, skip_feature], dim=1)
identity = self.shortcut(x)
# 主路径
x = self.conv_transpose(x)
x = self.activation(x)
x = self.conv1(x)
x = self.activation(x)
x = self.conv2(x)
# 残差连接
x = x + identity
x = self.bn3(x)
x = self.activation(x)
return x
class FramePredictionDecoder(nn.Module):
"""Improved decoder for frame prediction with better upsampling strategy"""
def __init__(self, embed_dims, output_channels=1, use_skip=False):
"""Improved decoder for frame prediction"""
def __init__(self, embed_dims, output_channels=1):
super().__init__()
self.use_skip = use_skip
# Reverse the embed_dims for decoder
decoder_dims = embed_dims[::-1]
# Define decoder dimensions independently (no skip connections)
start_dim = embed_dims[-1]
decoder_dims = [start_dim // (2 ** i) for i in range(4)] # e.g., [220, 110, 55, 27] for XS
self.blocks = nn.ModuleList()
if use_skip:
# 使用支持skip connections的block
# 第一个block从bottleneck到stage4使用大步长stride=4skip来自stage3
self.blocks.append(DecoderBlockWithSkip(
decoder_dims[0], decoder_dims[1],
skip_channels=embed_dims[3], # stage3的通道数
kernel_size=3, stride=4, padding=1, output_padding=3 # 改为stride=4
))
# 第二个blockstage4到stage3stride=2skip来自stage2
self.blocks.append(DecoderBlockWithSkip(
decoder_dims[1], decoder_dims[2],
skip_channels=embed_dims[2], # stage2的通道数
kernel_size=3, stride=2, padding=1, output_padding=1
))
# 第三个blockstage3到stage2stride=2skip来自stage1
self.blocks.append(DecoderBlockWithSkip(
decoder_dims[2], decoder_dims[3],
skip_channels=embed_dims[1], # stage1的通道数
kernel_size=3, stride=2, padding=1, output_padding=1
))
# 第四个blockstage2到stage1stride=2skip来自stage0
self.blocks.append(DecoderBlockWithSkip(
decoder_dims[3], 64, # 输出到64通道
skip_channels=embed_dims[0], # stage0的通道数
kernel_size=3, stride=2, padding=1, output_padding=1
))
else:
# 使用普通的DecoderBlock第一个block使用大步长
# 第一个blockstride=2 (decoder_dims[0] -> decoder_dims[1])
self.blocks.append(DecoderBlock(
decoder_dims[0], decoder_dims[1],
kernel_size=3, stride=4, padding=1, output_padding=3 # 改为stride=4
kernel_size=3, stride=2, padding=1, output_padding=1
))
# 第二个blockstride=2 (decoder_dims[1] -> decoder_dims[2])
self.blocks.append(DecoderBlock(
decoder_dims[1], decoder_dims[2],
kernel_size=3, stride=2, padding=1, output_padding=1
))
# 第三个blockstride=2 (decoder_dims[2] -> decoder_dims[3])
self.blocks.append(DecoderBlock(
decoder_dims[2], decoder_dims[3],
kernel_size=3, stride=2, padding=1, output_padding=1
))
# 第四个block增加到64通道
# 第四个blockstride=4 (decoder_dims[3] -> 64),放在倒数第二的位置
self.blocks.append(DecoderBlock(
decoder_dims[3], 64,
kernel_size=3, stride=2, padding=1, output_padding=1
kernel_size=3, stride=4, padding=1, output_padding=3 # stride=4放在这里
))
# 改进的最终输出层:不使用反卷积,只进行特征精炼
# 输入尺寸已经是目标尺寸,只需要调整通道数和进行特征融合
self.final_block = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(0.2, inplace=True),
nn.ReLU(inplace=True),
nn.Conv2d(64, 32, kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(32, output_channels, kernel_size=3, padding=1, bias=True)
# 移除Tanh让输出在任意范围由损失函数和归一化处理
nn.ReLU(inplace=True),
nn.Conv2d(32, output_channels, kernel_size=3, padding=1, bias=True),
nn.Tanh()
)
def forward(self, x, skip_features=None):
def forward(self, x):
"""
Args:
x: input tensor of shape [B, embed_dims[-1], H/32, W/32]
skip_features: list of encoder features from stages [stage3, stage2, stage1, stage0]
each of shape [B, C, H', W'] where C matches encoder dims
"""
if self.use_skip:
if skip_features is None:
raise ValueError("skip_features must be provided when use_skip=True")
# 确保有4个skip features
assert len(skip_features) == 4, f"Need 4 skip features, got {len(skip_features)}"
# 反转顺序以匹配解码器stage3, stage2, stage1, stage0
skip_features = skip_features[::-1]
# 调整skip特征的尺寸以匹配新的上采样策略
adjusted_skip_features = []
for i, skip in enumerate(skip_features):
if skip is not None:
# 计算目标尺寸4, 2, 2, 2倍上采样
upsample_factors = [4, 2, 2, 2]
target_height = x.shape[2] * upsample_factors[i]
target_width = x.shape[3] * upsample_factors[i]
if skip.shape[2:] != (target_height, target_width):
skip = torch.nn.functional.interpolate(
skip,
size=(target_height, target_width),
mode='bilinear',
align_corners=False
)
adjusted_skip_features.append(skip)
# 四个block使用skip connections
for i in range(4):
x = self.blocks[i](x, adjusted_skip_features[i])
else:
# 不使用skip connections
for i in range(4):
x = self.blocks[i](x)
@@ -316,10 +131,6 @@ class SwiftFormerTemporal(nn.Module):
model_name='XS',
num_frames=3,
use_decoder=True,
use_skip=True, # 新增是否使用skip connections
use_representation_head=False,
representation_dim=128,
return_features=False,
**kwargs):
super().__init__()
@@ -330,9 +141,6 @@ class SwiftFormerTemporal(nn.Module):
# Store configuration
self.num_frames = num_frames
self.use_decoder = use_decoder
self.use_skip = use_skip # 保存skip connections设置
self.use_representation_head = use_representation_head
self.return_features = return_features
# Modify stem to accept multiple frames (only Y channel)
in_channels = num_frames
@@ -365,33 +173,20 @@ class SwiftFormerTemporal(nn.Module):
if use_decoder:
self.decoder = FramePredictionDecoder(
embed_dims,
output_channels=1,
use_skip=use_skip # 传递skip connections设置
output_channels=1
)
# Representation head for pose/velocity prediction
if use_representation_head:
self.representation_head = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(embed_dims[-1], representation_dim),
nn.ReLU(),
nn.Linear(representation_dim, representation_dim)
)
else:
self.representation_head = None
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
# 使用Kaiming初始化适合ReLU/LeakyReLU
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
# 使用Kaiming初始化适合ReLU
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
# 反卷积层使用特定的初始化
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
@@ -399,19 +194,6 @@ class SwiftFormerTemporal(nn.Module):
nn.init.constant_(m.weight, 1.0)
def forward_tokens(self, x):
"""Forward through encoder network, return list of stage features if return_features else final output"""
if self.return_features or self.use_skip:
features = []
stage_idx = 0
for idx, block in enumerate(self.network):
x = block(x)
# 收集每个stage的输出stage0, stage1, stage2, stage3
# 根据SwiftFormer结构stage在索引0,2,4,6位置
if idx in [0, 2, 4, 6]:
features.append(x)
stage_idx += 1
return x, features
else:
for block in self.network:
x = block(x)
return x
@@ -421,61 +203,30 @@ class SwiftFormerTemporal(nn.Module):
Args:
x: input frames of shape [B, num_frames, H, W]
Returns:
If return_features is False:
pred_frame: predicted frame [B, 1, H, W] (or None)
representation: optional representation vector [B, representation_dim] (or None)
If return_features is True:
pred_frame, representation, features (list of stage features)
"""
# Encode
x = self.patch_embed(x)
if self.return_features or self.use_skip:
x, features = self.forward_tokens(x)
else:
x = self.forward_tokens(x)
x = self.norm(x)
# Get representation if needed
representation = None
if self.representation_head is not None:
representation = self.representation_head(x)
# Decode to frame
pred_frame = None
if self.use_decoder:
if self.use_skip:
# 提取用于skip connections的特征
# features包含所有stage的输出我们需要stage0, stage1, stage2, stage3
# 根据SwiftFormer结构应该有4个stage特征
if len(features) >= 4:
# 取四个stage的特征stage0, stage1, stage2, stage3
skip_features = [features[0], features[1], features[2], features[3]]
else:
# 如果特征不够,使用可用的特征
skip_features = features[:4]
# 如果特征仍然不够使用None填充
while len(skip_features) < 4:
skip_features.append(None)
pred_frame = self.decoder(x, skip_features)
else:
pred_frame = self.decoder(x)
if self.return_features:
return pred_frame, representation, features
else:
return pred_frame, representation
return pred_frame
# Factory functions for different model sizes
def SwiftFormerTemporal_XS(num_frames=3, use_skip=True, **kwargs):
return SwiftFormerTemporal('XS', num_frames=num_frames, use_skip=use_skip, **kwargs)
def SwiftFormerTemporal_XS(num_frames=3, **kwargs):
return SwiftFormerTemporal('XS', num_frames=num_frames, **kwargs)
def SwiftFormerTemporal_S(num_frames=3, use_skip=True, **kwargs):
return SwiftFormerTemporal('S', num_frames=num_frames, use_skip=use_skip, **kwargs)
def SwiftFormerTemporal_S(num_frames=3, **kwargs):
return SwiftFormerTemporal('S', num_frames=num_frames, **kwargs)
def SwiftFormerTemporal_L1(num_frames=3, use_skip=True, **kwargs):
return SwiftFormerTemporal('l1', num_frames=num_frames, use_skip=use_skip, **kwargs)
def SwiftFormerTemporal_L1(num_frames=3, **kwargs):
return SwiftFormerTemporal('l1', num_frames=num_frames, **kwargs)
def SwiftFormerTemporal_L3(num_frames=3, use_skip=True, **kwargs):
return SwiftFormerTemporal('l3', num_frames=num_frames, use_skip=use_skip, **kwargs)
def SwiftFormerTemporal_L3(num_frames=3, **kwargs):
return SwiftFormerTemporal('l3', num_frames=num_frames, **kwargs)

View File

View File

@@ -1,182 +0,0 @@
"""
Loss functions for frame prediction and representation learning
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class SSIMLoss(nn.Module):
"""
Structural Similarity Index Measure Loss
Based on: https://github.com/Po-Hsun-Su/pytorch-ssim
"""
def __init__(self, window_size=11, size_average=True):
super().__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 3
self.window = self.create_window(window_size, self.channel)
def create_window(self, window_size, channel):
def gaussian(window_size, sigma):
gauss = torch.Tensor([math.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def forward(self, img1, img2):
# Ensure window is on correct device
if self.window.device != img1.device:
self.window = self.window.to(img1.device)
mu1 = F.conv2d(img1, self.window, padding=self.window_size//2, groups=self.channel)
mu2 = F.conv2d(img2, self.window, padding=self.window_size//2, groups=self.channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1*img1, self.window, padding=self.window_size//2, groups=self.channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, self.window, padding=self.window_size//2, groups=self.channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, self.window, padding=self.window_size//2, groups=self.channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / ((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if self.size_average:
return 1 - ssim_map.mean()
else:
return 1 - ssim_map.mean(1).mean(1).mean(1)
class FramePredictionLoss(nn.Module):
"""
Combined loss for frame prediction
"""
def __init__(self, l1_weight=1.0, ssim_weight=0.1, use_ssim=True):
super().__init__()
self.l1_weight = l1_weight
self.ssim_weight = ssim_weight
self.use_ssim = use_ssim
self.l1_loss = nn.L1Loss()
if use_ssim:
self.ssim_loss = SSIMLoss()
def forward(self, pred, target):
"""
Args:
pred: predicted frame [B, 3, H, W] in range [-1, 1]
target: target frame [B, 3, H, W] in range [-1, 1]
Returns:
total_loss, loss_dict
"""
loss_dict = {}
# L1 loss
l1_loss = self.l1_loss(pred, target)
loss_dict['l1'] = l1_loss
total_loss = self.l1_weight * l1_loss
# SSIM loss
if self.use_ssim:
ssim_loss = self.ssim_loss(pred, target)
loss_dict['ssim'] = ssim_loss
total_loss += self.ssim_weight * ssim_loss
loss_dict['total'] = total_loss
return total_loss, loss_dict
class ContrastiveLoss(nn.Module):
"""
Contrastive loss for representation learning
Positive pairs: representations from adjacent frames
Negative pairs: representations from distant frames
"""
def __init__(self, temperature=0.1, margin=1.0):
super().__init__()
self.temperature = temperature
self.margin = margin
self.cosine_similarity = nn.CosineSimilarity(dim=-1)
def forward(self, representations, temporal_indices):
"""
Args:
representations: [B, D] representation vectors
temporal_indices: [B] temporal indices of each sample
Returns:
contrastive_loss
"""
batch_size = representations.size(0)
# Compute similarity matrix
sim_matrix = torch.matmul(representations, representations.T) / self.temperature
# Create positive mask (adjacent frames)
indices_expanded = temporal_indices.unsqueeze(0)
diff = torch.abs(indices_expanded - indices_expanded.T)
positive_mask = (diff == 1).float()
# Create negative mask (distant frames)
negative_mask = (diff > 2).float()
# Positive loss
pos_sim = sim_matrix * positive_mask
pos_loss = -torch.log(torch.exp(pos_sim) / torch.exp(sim_matrix).sum(dim=-1, keepdim=True) + 1e-8)
pos_loss = (pos_loss * positive_mask).sum() / (positive_mask.sum() + 1e-8)
# Negative loss (push apart)
neg_sim = sim_matrix * negative_mask
neg_loss = torch.relu(neg_sim - self.margin).mean()
return pos_loss + 0.1 * neg_loss
class MultiTaskLoss(nn.Module):
"""
Multi-task loss combining frame prediction and representation learning
"""
def __init__(self, frame_weight=1.0, contrastive_weight=0.1,
l1_weight=1.0, ssim_weight=0.1, use_contrastive=True):
super().__init__()
self.frame_weight = frame_weight
self.contrastive_weight = contrastive_weight
self.use_contrastive = use_contrastive
self.frame_loss = FramePredictionLoss(l1_weight=l1_weight, ssim_weight=ssim_weight)
if use_contrastive:
self.contrastive_loss = ContrastiveLoss()
def forward(self, pred_frame, target_frame, representations=None, temporal_indices=None):
"""
Args:
pred_frame: predicted frame [B, 3, H, W]
target_frame: target frame [B, 3, H, W]
representations: [B, D] representation vectors (optional)
temporal_indices: [B] temporal indices (optional)
Returns:
total_loss, loss_dict
"""
loss_dict = {}
# Frame prediction loss
frame_loss, frame_loss_dict = self.frame_loss(pred_frame, target_frame)
loss_dict.update({f'frame_{k}': v for k, v in frame_loss_dict.items()})
total_loss = self.frame_weight * frame_loss
# Contrastive loss (if representations provided)
if self.use_contrastive and representations is not None and temporal_indices is not None:
contrastive_loss = self.contrastive_loss(representations, temporal_indices)
loss_dict['contrastive'] = contrastive_loss
total_loss += self.contrastive_weight * contrastive_loss
loss_dict['total'] = total_loss
return total_loss, loss_dict