373 lines
14 KiB
Python
373 lines
14 KiB
Python
"""
|
|
Main training script for SwiftFormerTemporal frame prediction
|
|
"""
|
|
import argparse
|
|
import datetime
|
|
import numpy as np
|
|
import time
|
|
import torch
|
|
import torch.backends.cudnn as cudnn
|
|
import json
|
|
from pathlib import Path
|
|
|
|
from timm.scheduler import create_scheduler
|
|
from timm.optim import create_optimizer
|
|
from timm.utils import NativeScaler, get_state_dict, ModelEma
|
|
|
|
from util import *
|
|
from models import *
|
|
from models.swiftformer_temporal import SwiftFormerTemporal_XS, SwiftFormerTemporal_S, SwiftFormerTemporal_L1, SwiftFormerTemporal_L3
|
|
from util.video_dataset import VideoFrameDataset, SyntheticVideoDataset
|
|
from util.frame_losses import MultiTaskLoss
|
|
|
|
|
|
def get_args_parser():
|
|
parser = argparse.ArgumentParser(
|
|
'SwiftFormerTemporal training script', add_help=False)
|
|
|
|
# Dataset parameters
|
|
parser.add_argument('--data-path', default='./videos', type=str,
|
|
help='Path to video dataset')
|
|
parser.add_argument('--dataset-type', default='video', choices=['video', 'synthetic'],
|
|
type=str, help='Dataset type')
|
|
parser.add_argument('--num-frames', default=3, type=int,
|
|
help='Number of input frames (T)')
|
|
parser.add_argument('--frame-size', default=224, type=int,
|
|
help='Input frame size')
|
|
parser.add_argument('--max-interval', default=1, type=int,
|
|
help='Maximum interval between consecutive frames')
|
|
|
|
# Model parameters
|
|
parser.add_argument('--model', default='SwiftFormerTemporal_XS', type=str, metavar='MODEL',
|
|
help='Name of model to train')
|
|
parser.add_argument('--use-representation-head', action='store_true',
|
|
help='Use representation head for pose/velocity prediction')
|
|
parser.add_argument('--representation-dim', default=128, type=int,
|
|
help='Dimension of representation vector')
|
|
|
|
# Training parameters
|
|
parser.add_argument('--batch-size', default=32, type=int)
|
|
parser.add_argument('--epochs', default=100, type=int)
|
|
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
|
|
help='learning rate (default: 1e-3)')
|
|
parser.add_argument('--weight-decay', type=float, default=0.05,
|
|
help='weight decay (default: 0.05)')
|
|
|
|
# Loss parameters
|
|
parser.add_argument('--frame-weight', type=float, default=1.0,
|
|
help='Weight for frame prediction loss')
|
|
parser.add_argument('--contrastive-weight', type=float, default=0.1,
|
|
help='Weight for contrastive loss')
|
|
parser.add_argument('--l1-weight', type=float, default=1.0,
|
|
help='Weight for L1 loss')
|
|
parser.add_argument('--ssim-weight', type=float, default=0.1,
|
|
help='Weight for SSIM loss')
|
|
parser.add_argument('--no-contrastive', action='store_true',
|
|
help='Disable contrastive loss')
|
|
parser.add_argument('--no-ssim', action='store_true',
|
|
help='Disable SSIM loss')
|
|
|
|
# System parameters
|
|
parser.add_argument('--output-dir', default='./output',
|
|
help='path where to save, empty for no saving')
|
|
parser.add_argument('--device', default='cuda',
|
|
help='device to use for training / testing')
|
|
parser.add_argument('--seed', default=0, type=int)
|
|
parser.add_argument('--resume', default='', help='resume from checkpoint')
|
|
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
|
|
help='start epoch')
|
|
parser.add_argument('--eval', action='store_true',
|
|
help='Perform evaluation only')
|
|
parser.add_argument('--num-workers', default=4, type=int)
|
|
parser.add_argument('--pin-mem', action='store_true',
|
|
help='Pin CPU memory in DataLoader')
|
|
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem')
|
|
parser.set_defaults(pin_mem=True)
|
|
|
|
# Distributed training
|
|
parser.add_argument('--world-size', default=1, type=int,
|
|
help='number of distributed processes')
|
|
parser.add_argument('--dist-url', default='env://',
|
|
help='url used to set up distributed training')
|
|
|
|
return parser
|
|
|
|
|
|
def build_dataset(is_train, args):
|
|
"""Build video frame dataset"""
|
|
if args.dataset_type == 'synthetic':
|
|
dataset = SyntheticVideoDataset(
|
|
num_samples=1000 if is_train else 200,
|
|
num_frames=args.num_frames,
|
|
frame_size=args.frame_size,
|
|
is_train=is_train
|
|
)
|
|
else:
|
|
dataset = VideoFrameDataset(
|
|
root_dir=args.data_path,
|
|
num_frames=args.num_frames,
|
|
frame_size=args.frame_size,
|
|
is_train=is_train,
|
|
max_interval=args.max_interval
|
|
)
|
|
|
|
return dataset
|
|
|
|
|
|
def main(args):
|
|
utils.init_distributed_mode(args)
|
|
print(args)
|
|
|
|
device = torch.device(args.device)
|
|
|
|
# Fix the seed for reproducibility
|
|
seed = args.seed + utils.get_rank()
|
|
torch.manual_seed(seed)
|
|
np.random.seed(seed)
|
|
|
|
cudnn.benchmark = True
|
|
|
|
# Build datasets
|
|
dataset_train = build_dataset(is_train=True, args=args)
|
|
dataset_val = build_dataset(is_train=False, args=args)
|
|
|
|
# Create samplers
|
|
if args.distributed:
|
|
sampler_train = torch.utils.data.DistributedSampler(dataset_train)
|
|
sampler_val = torch.utils.data.DistributedSampler(dataset_val, shuffle=False)
|
|
else:
|
|
sampler_train = torch.utils.data.RandomSampler(dataset_train)
|
|
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
|
|
|
data_loader_train = torch.utils.data.DataLoader(
|
|
dataset_train, sampler=sampler_train,
|
|
batch_size=args.batch_size,
|
|
num_workers=args.num_workers,
|
|
pin_memory=args.pin_mem,
|
|
drop_last=True,
|
|
)
|
|
|
|
data_loader_val = torch.utils.data.DataLoader(
|
|
dataset_val, sampler=sampler_val,
|
|
batch_size=args.batch_size,
|
|
num_workers=args.num_workers,
|
|
pin_memory=args.pin_mem,
|
|
drop_last=False
|
|
)
|
|
|
|
# Create model
|
|
print(f"Creating model: {args.model}")
|
|
model_kwargs = {
|
|
'num_frames': args.num_frames,
|
|
'use_representation_head': args.use_representation_head,
|
|
'representation_dim': args.representation_dim,
|
|
}
|
|
|
|
if args.model == 'SwiftFormerTemporal_XS':
|
|
model = SwiftFormerTemporal_XS(**model_kwargs)
|
|
elif args.model == 'SwiftFormerTemporal_S':
|
|
model = SwiftFormerTemporal_S(**model_kwargs)
|
|
elif args.model == 'SwiftFormerTemporal_L1':
|
|
model = SwiftFormerTemporal_L1(**model_kwargs)
|
|
elif args.model == 'SwiftFormerTemporal_L3':
|
|
model = SwiftFormerTemporal_L3(**model_kwargs)
|
|
else:
|
|
raise ValueError(f"Unknown model: {args.model}")
|
|
|
|
model.to(device)
|
|
|
|
# Model EMA
|
|
model_ema = None
|
|
if hasattr(args, 'model_ema') and args.model_ema:
|
|
model_ema = ModelEma(
|
|
model,
|
|
decay=args.model_ema_decay if hasattr(args, 'model_ema_decay') else 0.9999,
|
|
device='cpu' if hasattr(args, 'model_ema_force_cpu') and args.model_ema_force_cpu else '',
|
|
resume='')
|
|
|
|
# Distributed training
|
|
model_without_ddp = model
|
|
if args.distributed:
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
|
model_without_ddp = model.module
|
|
|
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
print(f'Number of parameters: {n_parameters}')
|
|
|
|
# Create optimizer
|
|
optimizer = create_optimizer(args, model_without_ddp)
|
|
|
|
# Create loss scaler
|
|
loss_scaler = NativeScaler()
|
|
|
|
# Create scheduler
|
|
lr_scheduler, _ = create_scheduler(args, optimizer)
|
|
|
|
# Create loss function
|
|
criterion = MultiTaskLoss(
|
|
frame_weight=args.frame_weight,
|
|
contrastive_weight=args.contrastive_weight,
|
|
l1_weight=args.l1_weight,
|
|
ssim_weight=args.ssim_weight,
|
|
use_contrastive=not args.no_contrastive
|
|
)
|
|
|
|
# Resume from checkpoint
|
|
output_dir = Path(args.output_dir)
|
|
if args.resume:
|
|
if args.resume.startswith('https'):
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
args.resume, map_location='cpu', check_hash=True)
|
|
else:
|
|
checkpoint = torch.load(args.resume, map_location='cpu')
|
|
|
|
model_without_ddp.load_state_dict(checkpoint['model'])
|
|
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
|
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
|
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
|
args.start_epoch = checkpoint['epoch'] + 1
|
|
if model_ema is not None:
|
|
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
|
|
if 'scaler' in checkpoint:
|
|
loss_scaler.load_state_dict(checkpoint['scaler'])
|
|
|
|
if args.eval:
|
|
test_stats = evaluate(data_loader_val, model, criterion, device)
|
|
print(f"Test stats: {test_stats}")
|
|
return
|
|
|
|
print(f"Start training for {args.epochs} epochs")
|
|
start_time = time.time()
|
|
|
|
for epoch in range(args.start_epoch, args.epochs):
|
|
if args.distributed:
|
|
data_loader_train.sampler.set_epoch(epoch)
|
|
|
|
train_stats = train_one_epoch(
|
|
model, criterion, data_loader_train,
|
|
optimizer, device, epoch, loss_scaler,
|
|
model_ema=model_ema
|
|
)
|
|
|
|
lr_scheduler.step(epoch)
|
|
|
|
# Save checkpoint
|
|
if args.output_dir and (epoch % 10 == 0 or epoch == args.epochs - 1):
|
|
checkpoint_path = output_dir / f'checkpoint_epoch{epoch}.pth'
|
|
utils.save_on_master({
|
|
'model': model_without_ddp.state_dict(),
|
|
'optimizer': optimizer.state_dict(),
|
|
'lr_scheduler': lr_scheduler.state_dict(),
|
|
'epoch': epoch,
|
|
'model_ema': get_state_dict(model_ema) if model_ema else None,
|
|
'scaler': loss_scaler.state_dict(),
|
|
'args': args,
|
|
}, checkpoint_path)
|
|
|
|
# Evaluate
|
|
if epoch % 5 == 0 or epoch == args.epochs - 1:
|
|
test_stats = evaluate(data_loader_val, model, criterion, device)
|
|
print(f"Epoch {epoch}: Test stats: {test_stats}")
|
|
|
|
# Log stats
|
|
log_stats = {
|
|
**{f'train_{k}': v for k, v in train_stats.items()},
|
|
**{f'test_{k}': v for k, v in test_stats.items()},
|
|
'epoch': epoch,
|
|
'n_parameters': n_parameters
|
|
}
|
|
|
|
if args.output_dir and utils.is_main_process():
|
|
with (output_dir / "log.txt").open("a") as f:
|
|
f.write(json.dumps(log_stats) + "\n")
|
|
|
|
total_time = time.time() - start_time
|
|
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
|
print(f'Training time {total_time_str}')
|
|
|
|
|
|
def train_one_epoch(model, criterion, data_loader, optimizer, device, epoch, loss_scaler,
|
|
clip_grad=0, clip_mode='norm', model_ema=None, **kwargs):
|
|
model.train()
|
|
metric_logger = utils.MetricLogger(delimiter=" ")
|
|
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
|
header = f'Epoch: [{epoch}]'
|
|
print_freq = 10
|
|
|
|
for input_frames, target_frames, temporal_indices in metric_logger.log_every(
|
|
data_loader, print_freq, header):
|
|
|
|
input_frames = input_frames.to(device, non_blocking=True)
|
|
target_frames = target_frames.to(device, non_blocking=True)
|
|
temporal_indices = temporal_indices.to(device, non_blocking=True)
|
|
|
|
# Forward pass
|
|
with torch.cuda.amp.autocast():
|
|
pred_frames, representations = model(input_frames)
|
|
loss, loss_dict = criterion(
|
|
pred_frames, target_frames,
|
|
representations, temporal_indices
|
|
)
|
|
|
|
loss_value = loss.item()
|
|
if not torch.isfinite(torch.tensor(loss_value)):
|
|
print(f"Loss is {loss_value}, stopping training")
|
|
raise ValueError(f"Loss is {loss_value}")
|
|
|
|
optimizer.zero_grad()
|
|
loss_scaler(loss, optimizer, clip_grad=clip_grad, clip_mode=clip_mode,
|
|
parameters=model.parameters())
|
|
|
|
torch.cuda.synchronize()
|
|
if model_ema is not None:
|
|
model_ema.update(model)
|
|
|
|
# Update metrics
|
|
metric_logger.update(loss=loss_value)
|
|
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
|
for k, v in loss_dict.items():
|
|
metric_logger.update(**{k: v.item() if torch.is_tensor(v) else v})
|
|
|
|
metric_logger.synchronize_between_processes()
|
|
print("Averaged stats:", metric_logger)
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
|
|
|
|
|
@torch.no_grad()
|
|
def evaluate(data_loader, model, criterion, device):
|
|
model.eval()
|
|
metric_logger = utils.MetricLogger(delimiter=" ")
|
|
header = 'Test:'
|
|
|
|
for input_frames, target_frames, temporal_indices in metric_logger.log_every(data_loader, 10, header):
|
|
input_frames = input_frames.to(device, non_blocking=True)
|
|
target_frames = target_frames.to(device, non_blocking=True)
|
|
temporal_indices = temporal_indices.to(device, non_blocking=True)
|
|
|
|
# Compute output
|
|
with torch.cuda.amp.autocast():
|
|
pred_frames, representations = model(input_frames)
|
|
loss, loss_dict = criterion(
|
|
pred_frames, target_frames,
|
|
representations, temporal_indices
|
|
)
|
|
|
|
# Update metrics
|
|
metric_logger.update(loss=loss.item())
|
|
for k, v in loss_dict.items():
|
|
metric_logger.update(**{k: v.item() if torch.is_tensor(v) else v})
|
|
|
|
metric_logger.synchronize_between_processes()
|
|
print('* Test stats:', metric_logger)
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(
|
|
'SwiftFormerTemporal training script', parents=[get_args_parser()])
|
|
args = parser.parse_args()
|
|
|
|
if args.output_dir:
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
main(args) |