Files
lora_plug/serial_module.c

473 lines
15 KiB
C
Raw Normal View History

2025-02-19 16:09:44 +08:00
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <zlib.h> // 引入 zlib 库
#include <fec.h> // 引入 libfec 库
#include "hx_serial.h"
#include "hx_ringbuffer.h"
#include <pthread.h> // 引入 pthread 库
// 宏定义
#ifdef USE_FEC
#define FEC_SIZE 32 // 前向纠错冗余数据大小
#else
#define FEC_SIZE 0 // 前向纠错冗余数据大小
#endif
2025-03-01 19:22:24 +08:00
#define FRAME_HEADER 0xAA55 // 帧头
#define FRAME_TAIL 0x0D7E // 帧尾
#define FRAME_SIZE (240) // 每帧大小
#define HEADER_SIZE (4) // 帧头 + 帧序号 + 数据长度
#define TAIL_SIZE (2) // 帧尾
#define CHECKSUM_SIZE (4) // CRC32 校验和大小4 字节)
2025-02-19 21:54:47 +08:00
#define DATA_SIZE (FRAME_SIZE - HEADER_SIZE - CHECKSUM_SIZE - FEC_SIZE - TAIL_SIZE) // 数据段大小
2025-03-01 19:22:24 +08:00
#define RING_BUFFER_SIZE (1024 * 10) // 环形缓冲区大小 - default 10KB
#define QUEUE_MAX_SIZE 1024 // 队列最大容量
2025-02-19 16:09:44 +08:00
// 全局变量
static by_serial_t serial_port;
static by_ringbuf_t ring_buffer;
2025-02-19 21:54:47 +08:00
static unsigned char send_buffer[FRAME_SIZE];
2025-03-01 19:22:24 +08:00
static unsigned char recv_ack_data_buffer[DATA_SIZE];
2025-02-19 21:54:47 +08:00
static unsigned char frame_counter = 0;
static unsigned char data_len = 0;
2025-03-01 19:22:24 +08:00
static unsigned char ack_flag = 0;
unsigned char output_data[8192]; // FIXME 有可能越界
2025-02-19 19:58:05 +08:00
static int output_len = 0;
2025-03-01 19:22:24 +08:00
static unsigned char ack_data_dummy[4] = {0x00, 0x00, 0x00, 0x00};
static unsigned char ack_data[DATA_SIZE - 2] = {0};
static int ack_data_len = 0;
2025-02-19 19:58:05 +08:00
2025-02-19 16:09:44 +08:00
// 定义队列结构体
2025-02-19 19:58:05 +08:00
typedef struct
{
2025-02-19 21:54:47 +08:00
unsigned char *data;
2025-02-19 16:09:44 +08:00
int length;
} FrameData;
// 队列相关定义
2025-02-19 19:58:05 +08:00
static FrameData frame_queue[QUEUE_MAX_SIZE]; // 存储接收到的数据帧
static int queue_head = 0; // 队列头指针
static int queue_tail = 0; // 队列尾指针
2025-02-19 16:09:44 +08:00
static pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER; // 保护队列的互斥锁
2025-03-01 19:22:24 +08:00
static int stop_receiving = false; // 控制接收线程停止的标志
2025-02-19 16:09:44 +08:00
// 前向声明
void *receive_thread_func(void *arg);
2025-03-01 19:22:24 +08:00
int generate_response(unsigned char *data, int length, int ack);
2025-02-19 16:09:44 +08:00
// 计算 CRC32 校验和
2025-02-19 21:54:47 +08:00
unsigned long calculate_crc32(const unsigned char *data, size_t length)
2025-02-19 19:58:05 +08:00
{
2025-02-19 16:09:44 +08:00
return crc32(0, data, length);
}
// 解析一帧数据
2025-02-19 21:54:47 +08:00
int parse_frame(by_ringbuf_t *ringbuf, unsigned char *output_data, int *output_len)
2025-02-19 19:58:05 +08:00
{
2025-02-19 21:54:47 +08:00
unsigned char frame[FRAME_SIZE];
unsigned char buffer[FRAME_SIZE * 3];
2025-02-19 16:09:44 +08:00
int available_data = by_ringbuf_available_data(ringbuf);
2025-02-19 21:54:47 +08:00
while (by_ringbuf_available_data(ringbuf) < FRAME_SIZE)
{
int ret = by_serial_read(&serial_port, buffer, FRAME_SIZE);
if (ret > 0)
{
by_ringbuf_append(&ring_buffer, buffer, ret);
}
}
// TODO 有无必要
2025-02-19 16:09:44 +08:00
// 检查是否有足够的数据解析一帧
2025-02-19 21:54:47 +08:00
if (available_data < FRAME_SIZE)
2025-02-19 19:58:05 +08:00
{
2025-02-19 16:09:44 +08:00
return -1; // 数据不足,无法解析
}
// 查找帧头
2025-02-19 21:54:47 +08:00
unsigned short header = FRAME_HEADER;
unsigned short tail = FRAME_TAIL;
int header_pos = by_ringbuf_find(ringbuf, (unsigned char *)&header, 2);
2025-02-19 19:58:05 +08:00
if (header_pos < 0)
{
2025-02-19 16:09:44 +08:00
return -1; // 没有找到帧头
}
// 弹出帧头之前的数据
by_ringbuf_pop(ringbuf, frame, header_pos);
// 检查是否有足够的数据解析一帧
2025-02-19 19:58:05 +08:00
if (by_ringbuf_available_data(ringbuf) < FRAME_SIZE)
{
2025-02-19 16:09:44 +08:00
return -1; // 数据不足,无法解析
}
2025-03-01 19:22:24 +08:00
// 读取帧数据
2025-02-19 21:54:47 +08:00
by_ringbuf_pop(ringbuf, frame, HEADER_SIZE);
int tail_pos = by_ringbuf_find(ringbuf, (unsigned char *)&tail, 2);
if (tail_pos < FRAME_SIZE - HEADER_SIZE - TAIL_SIZE - 1)
{
printf(" fail, next frame header pos: %d\n", header_pos);
return -2; // 下一帧帧头小于 FRAME_SIZE丢弃该帧
}
else
{
by_ringbuf_pop(ringbuf, frame + HEADER_SIZE, tail_pos + TAIL_SIZE);
}
2025-02-19 16:09:44 +08:00
// 解析帧序号、有效数据长度、数据段和 CRC32
2025-02-19 21:54:47 +08:00
unsigned char seq = frame[2];
unsigned char valid_data_len = frame[2 + 1];
unsigned char *data_segment = &frame[2 + 1 + 1];
unsigned int received_crc = *(unsigned long *)&frame[HEADER_SIZE + DATA_SIZE];
2025-02-19 16:09:44 +08:00
// 计算 CRC32 校验
2025-02-19 21:54:47 +08:00
unsigned int calculated_crc = calculate_crc32(frame, HEADER_SIZE + DATA_SIZE + FEC_SIZE);
2025-02-19 19:58:05 +08:00
if (received_crc != calculated_crc)
{
2025-02-19 16:09:44 +08:00
printf("CRC mismatch! Expected: %08X, Received: %08X\n", calculated_crc, received_crc);
2025-02-19 21:54:47 +08:00
return -2; // CRC 校验失败,丢弃该帧,严重错误
2025-02-19 16:09:44 +08:00
}
2025-03-01 19:22:24 +08:00
if (0xFF == seq)
{
// printf("Received ACK frame!\r\n");
*output_len = 0;
if (0x1926 == *(unsigned short *)(data_segment))
{
memcpy(recv_ack_data_buffer, data_segment + 2, valid_data_len - 2);
ack_data_len = valid_data_len - 2;
printf("Received ACK frame!\r\n");
return 2;
}
memset(recv_ack_data_buffer, 0, DATA_SIZE);
return 3;
}
2025-02-19 16:09:44 +08:00
// 将有效数据拼接到输出缓冲区
memcpy(&output_data[*output_len], data_segment, valid_data_len);
*output_len += valid_data_len;
2025-02-19 19:58:05 +08:00
printf("output len: %d\n", *output_len);
printf("Received frame: seq=%d, len=%d\r\n", seq, valid_data_len);
2025-02-19 16:09:44 +08:00
// 判断是否为最后一帧
2025-02-19 19:58:05 +08:00
if (valid_data_len < DATA_SIZE)
{
2025-02-19 16:09:44 +08:00
printf("Received last frame!\n");
return 1; // 最后一帧,解析完成
}
return 0; // 成功解析一帧,但可能还有更多帧
}
// 接收线程函数
2025-02-19 19:58:05 +08:00
void *receive_thread_func(void *arg)
{
while (!stop_receiving)
{
while (1)
{
2025-02-19 16:09:44 +08:00
int parse_result = parse_frame(&ring_buffer, output_data, &output_len);
2025-02-19 19:58:05 +08:00
if (parse_result == 1)
{
2025-03-01 19:22:24 +08:00
int ack_data_len_t = 0;
if (ack_data_len > DATA_SIZE - 2)
{
ack_data_len_t = DATA_SIZE - 2;
}
else
{
ack_data_len_t = ack_data_len;
}
if (ack_data[0] == 0x00)
{
generate_response(ack_data_dummy, sizeof(ack_data_dummy), 1);
}
else
{
generate_response(ack_data, ack_data_len_t, 1);
// generate_response(ack_data_dummy, sizeof(ack_data_dummy), 1);
}
2025-02-19 16:09:44 +08:00
// 将解析后的数据放入队列
pthread_mutex_lock(&queue_mutex);
2025-02-19 19:58:05 +08:00
if ((queue_tail + 1) % QUEUE_MAX_SIZE != queue_head)
{ // 队列未满
2025-02-19 16:09:44 +08:00
frame_queue[queue_tail].data = malloc(output_len);
memcpy(frame_queue[queue_tail].data, output_data, output_len);
2025-02-19 19:58:05 +08:00
printf("output_len2: %d\n", output_len);
2025-02-19 16:09:44 +08:00
frame_queue[queue_tail].length = output_len;
queue_tail = (queue_tail + 1) % QUEUE_MAX_SIZE;
2025-02-19 19:58:05 +08:00
}
else
{
2025-02-19 16:09:44 +08:00
printf("Queue is full, dropping frame!\n");
}
2025-02-19 19:58:05 +08:00
output_len = 0;
2025-02-19 16:09:44 +08:00
pthread_mutex_unlock(&queue_mutex);
break;
2025-02-19 19:58:05 +08:00
}
else if (parse_result == 0)
{
printf("Parsed data length: %d\n", output_len);
break; // 数据不足或解析失败,退出循环
}
2025-02-19 21:54:47 +08:00
else if (parse_result == -2)
2025-02-19 19:58:05 +08:00
{
2025-03-01 19:22:24 +08:00
// TODO 此处不能回应 NAK必须等数据发完
2025-02-19 21:54:47 +08:00
output_len = 0;
2025-03-01 19:22:24 +08:00
break; // 严重错误,丢弃包
}
else if (parse_result == 2)
{
ack_flag = 1;
printf("Received ACK frame!\r\n");
break;
}
else if (parse_result == 3)
{
ack_flag = 2;
printf("Received NACK frame!\r\n");
break;
2025-02-19 16:09:44 +08:00
}
}
usleep(1000); // 避免占用过多 CPU
}
return NULL;
}
2025-03-01 19:22:24 +08:00
int generate_response(unsigned char *data, int length, int ack)
{
// 响应帧结构(与普通帧相似,帧号为 0xFF数据段前 2 个字节为 ACK 标志,负载数据必须小于普通帧满数据大小,以确保被识别成孤立帧)
unsigned char send_buffer[FRAME_SIZE];
memset(send_buffer, 0, FRAME_SIZE);
// 构造帧头
unsigned short header = FRAME_HEADER;
memcpy(send_buffer, &header, 2);
// 构造帧序号和数据长度
// memcpy(send_buffer + 2, 0xFF, 1);
*(send_buffer + 2) = 0xFF;
length += 2; // 包含 ACK 标志长度
if (length > DATA_SIZE)
{
return -1; // 数据超长
}
memcpy(send_buffer + 3, &length, 1);
// magic number for ack
unsigned short ack_flag = 0x1926;
if (ack)
{
memcpy(send_buffer + HEADER_SIZE, &ack_flag, 2);
}
else
{
memset(send_buffer + HEADER_SIZE, 0, 2);
}
// 拷贝该帧对应数据段
memcpy(send_buffer + HEADER_SIZE + 2, data, length - 2);
// 计算 CRC32 校验和
unsigned long crc = calculate_crc32(send_buffer, HEADER_SIZE + DATA_SIZE + FEC_SIZE);
memcpy(send_buffer + HEADER_SIZE + DATA_SIZE + FEC_SIZE, &crc, CHECKSUM_SIZE);
unsigned short tail = FRAME_TAIL;
memcpy(send_buffer + HEADER_SIZE + DATA_SIZE + FEC_SIZE + CHECKSUM_SIZE, &tail, TAIL_SIZE);
// 发送响应帧
if (by_serial_write(&serial_port, send_buffer, FRAME_SIZE) != 0)
{
return -2; // 发送失败
}
return 0;
}
2025-02-19 16:09:44 +08:00
// 初始化串口
2025-02-19 19:58:05 +08:00
static PyObject *serial_init(PyObject *self, PyObject *args)
{
2025-02-19 16:09:44 +08:00
const char *dev_name;
2025-02-19 19:58:05 +08:00
if (!PyArg_ParseTuple(args, "s", &dev_name))
{
2025-02-19 16:09:44 +08:00
return NULL;
}
2025-02-19 19:58:05 +08:00
if (by_serial_init(&serial_port, dev_name) != 0)
{
2025-02-19 16:09:44 +08:00
PyErr_SetString(PyExc_IOError, "Failed to initialize serial port");
return NULL;
}
// 初始化环形缓冲区
2025-02-19 19:58:05 +08:00
if (by_ringbuf_init(&ring_buffer, RING_BUFFER_SIZE) != 0)
{
2025-02-19 16:09:44 +08:00
PyErr_SetString(PyExc_IOError, "Failed to initialize ring buffer");
return NULL;
}
// 启动接收线程
pthread_t receive_thread;
stop_receiving = false;
2025-02-19 19:58:05 +08:00
if (pthread_create(&receive_thread, NULL, receive_thread_func, NULL) != 0)
{
2025-02-19 16:09:44 +08:00
PyErr_SetString(PyExc_RuntimeError, "Failed to start receive thread");
return NULL;
}
2025-03-01 19:22:24 +08:00
Py_RETURN_TRUE;
2025-02-19 16:09:44 +08:00
}
// 发送数据
2025-02-19 19:58:05 +08:00
static PyObject *serial_send(PyObject *self, PyObject *args)
{
2025-02-19 16:09:44 +08:00
const char *data;
Py_ssize_t length;
2025-02-19 19:58:05 +08:00
if (!PyArg_ParseTuple(args, "s#", &data, &length))
{
2025-02-19 16:09:44 +08:00
return NULL;
}
size_t offset = 0;
2025-02-19 19:58:05 +08:00
while (offset < length)
{
2025-02-19 16:09:44 +08:00
memset(send_buffer, 0, FRAME_SIZE);
// 构造帧头
2025-02-19 21:54:47 +08:00
unsigned short header = FRAME_HEADER;
2025-02-19 16:09:44 +08:00
memcpy(send_buffer, &header, 2);
// 构造帧序号和数据长度
memcpy(send_buffer + 2, &frame_counter, 1);
2025-02-19 19:58:05 +08:00
if (length - offset > DATA_SIZE)
{
2025-02-19 16:09:44 +08:00
data_len = DATA_SIZE;
2025-02-19 19:58:05 +08:00
}
else
{
2025-02-19 16:09:44 +08:00
data_len = length - offset;
}
memcpy(send_buffer + 3, &data_len, 1);
// 拷贝该帧对应数据段
memcpy(send_buffer + HEADER_SIZE, data + offset, data_len);
2025-02-19 19:57:21 +08:00
printf("Received frame: seq=%d, len=%d\r\n", frame_counter, data_len);
2025-02-19 16:09:44 +08:00
// 计算 CRC32 校验和
2025-02-19 21:54:47 +08:00
unsigned long crc = calculate_crc32(send_buffer, HEADER_SIZE + DATA_SIZE + FEC_SIZE);
2025-02-19 16:09:44 +08:00
memcpy(send_buffer + HEADER_SIZE + DATA_SIZE + FEC_SIZE, &crc, CHECKSUM_SIZE);
2025-02-19 21:54:47 +08:00
unsigned short tail = FRAME_TAIL;
memcpy(send_buffer + HEADER_SIZE + DATA_SIZE + FEC_SIZE + CHECKSUM_SIZE, &tail, TAIL_SIZE);
2025-02-19 16:09:44 +08:00
// 发送帧
2025-02-19 19:58:05 +08:00
if (by_serial_write(&serial_port, (const char *)send_buffer, FRAME_SIZE) != 0)
{
2025-02-19 16:09:44 +08:00
PyErr_SetString(PyExc_IOError, "Failed to send data over serial port");
return NULL;
}
offset += DATA_SIZE;
frame_counter++;
usleep(80000);
}
2025-03-01 19:22:24 +08:00
unsigned short ack_timeout = 10;
// 等待 ACK 响应
while (!ack_flag)
{
usleep(100000);
if (ack_timeout-- == 0)
{
ack_flag = 0;
frame_counter = 0;
printf("ACK timeout\r\n");
Py_RETURN_FALSE;
}
}
ack_flag = 0;
2025-02-19 16:09:44 +08:00
frame_counter = 0;
2025-03-01 19:22:24 +08:00
// Py_RETURN_TRUE;
// 返回 ACK 响应
PyObject *result = Py_BuildValue("y#", recv_ack_data_buffer, ack_data_len);
ack_data_len = 0;
return result;
2025-02-19 16:09:44 +08:00
}
// 接收数据
2025-02-19 19:58:05 +08:00
static PyObject *serial_receive(PyObject *self, PyObject *args)
{
2025-02-19 16:09:44 +08:00
pthread_mutex_lock(&queue_mutex);
2025-02-19 19:58:05 +08:00
if (queue_head == queue_tail)
{
2025-02-19 16:09:44 +08:00
pthread_mutex_unlock(&queue_mutex);
PyErr_SetString(PyExc_IOError, "No data available in the queue");
return NULL;
}
// 获取队列中最早的数据包
FrameData frame = frame_queue[queue_head];
queue_head = (queue_head + 1) % QUEUE_MAX_SIZE;
pthread_mutex_unlock(&queue_mutex);
// 返回解析后的数据
PyObject *result = Py_BuildValue("y#", frame.data, frame.length);
free(frame.data); // 释放内存
return result;
}
2025-03-01 19:22:24 +08:00
static PyObject *serial_set_ack_data(PyObject *self, PyObject *args)
{
const char *input_data; // 用于存储输入的二进制数据
Py_ssize_t input_length; // 用于存储输入数据的长度
// 解析参数,期望接收到一个 bytes 对象
if (!PyArg_ParseTuple(args, "y#", &input_data, &input_length))
{
PyErr_SetString(PyExc_TypeError, "Expected a bytes object");
return NULL;
}
// 检查输入数据是否为空
if (input_length == 0)
{
PyErr_SetString(PyExc_ValueError, "Input data cannot be empty");
return NULL;
}
// 检查输入数据是否为空
if (input_length > (DATA_SIZE - 2))
{
PyErr_SetString(PyExc_ValueError, "Input data is too long");
return NULL;
}
// // 创建一个缓冲区用于存储处理后的数据
// char *processed_data = (char *)malloc(input_length);
// if (processed_data == NULL) {
// PyErr_SetString(PyExc_MemoryError, "Failed to allocate memory");
// return NULL;
// }
// // 将处理后的数据封装为 Python 的 bytes 对象
// PyObject *result = PyBytes_FromStringAndSize(processed_data, input_length);
// // 释放分配的内存
// free(processed_data);
// // 返回结果
// return result;
memcpy(ack_data, input_data, input_length);
ack_data_len = input_length;
Py_RETURN_NONE;
}
2025-02-19 16:09:44 +08:00
// 模块方法表
static PyMethodDef SerialMethods[] = {
{"init", serial_init, METH_VARARGS, "Initialize serial port"},
{"send", serial_send, METH_VARARGS, "Send data over serial port"},
{"receive", serial_receive, METH_VARARGS, "Receive data from serial port"},
2025-03-01 19:22:24 +08:00
{"set_ack_data", serial_set_ack_data, METH_VARARGS, "Set ACK data"},
2025-02-19 16:09:44 +08:00
{NULL, NULL, 0, NULL}};
// 模块定义
static struct PyModuleDef serialmodule = {
PyModuleDef_HEAD_INIT,
"serial_module",
2025-03-01 19:22:24 +08:00
"A module to transfer serializable data over serial port",
2025-02-19 16:09:44 +08:00
-1,
SerialMethods};
// 模块初始化函数
2025-02-19 19:58:05 +08:00
PyMODINIT_FUNC PyInit_serial_module(void)
{
2025-02-19 16:09:44 +08:00
return PyModule_Create(&serialmodule);
}