feat: 启用llm任务初版

This commit is contained in:
bmy
2024-08-01 22:54:05 +08:00
parent e51c126f1f
commit d0b02a66e6
8 changed files with 514 additions and 120 deletions

3
app.py
View File

@@ -15,9 +15,8 @@ from main_upper import main_func
server_command = [
{"path": "/home/evan/Workplace/project_capture/build/", "script": "./capture"},
{"path": "/home/evan/Workplace/project_infer/lane_server/", "script": "lane_infer_server.py"},
# {"path": "/home/evan/Workplace/project_infer/lane_server/", "script": "lane_infer_server1.py"},
{"path": "/home/evan/Workplace/project_infer/yolo_server/", "script": "yolo_infer_server.py"},
{"path": "/home/evan/Workplace/project_infer/ocr_server/", "script": "ocr_infer_server.py"},
]
processes = []

View File

@@ -10,5 +10,5 @@ UpTower_enable = true
GetRBall_enable = true
PutBBall_enable = true
PutHanoi_enable = true
MoveArea_enable = false
MoveArea_enable = true
KickAss_enable = true

View File

@@ -13,7 +13,7 @@ GetRBall_counts = 10
PutBBall_counts = 15
PutHanoi1_counts = 7
PutHanoi2_counts = 2
PutHanoi3_counts = 5
PutHanoi3_counts = 2
MoveArea1_counts = 6
MoveArea2_counts = 1700
KickAss_counts = 10

View File

@@ -50,7 +50,7 @@ pid_kd = 0
pid_kp = 1.2
pid_ki = 0
pid_kd = 0
llm_enable = false
llm_enable = true
[kick_ass]
pid_kp = 0.8

View File

@@ -11,8 +11,9 @@ import time
import variable as var
import action as act
import re
import threading
import ctypes
import math
# import threading
# import ctypes
cfg = None
cfg_args = None
by_cmd = None
@@ -60,10 +61,10 @@ def import_obj(_by_cmd, skip_queue):
logger.info("subtask yolo client init")
# ocr socket 客户端
# context1 = zmq.Context()
# ocr_socket = context1.socket(zmq.REQ)
# ocr_socket.connect("tcp://localhost:6668")
# logger.info("subtask ocr client init")
context1 = zmq.Context()
ocr_socket = context1.socket(zmq.REQ)
ocr_socket.connect("tcp://localhost:6668")
logger.info("subtask ocr client init")
filter = label_filter(socket)
if cfg['move_area']['llm_enable']:
@@ -1234,6 +1235,7 @@ class move_area1():
logger.info("应急避险第一阶段初始化")
while (by_cmd.send_angle_camera(0) == -1):
by_cmd.send_angle_camera(0)
filter.switch_camera(1)
def find(self):
ret = filter.find(tlabel.SIGN)
if ret:
@@ -1296,6 +1298,31 @@ class move_area1():
# 应急避险 第二阶段 找停车区域
class move_area2():
def __init__(self):
self.action_dict = {
'beep_seconds': self.beep_seconds,
'beep_counts': self.beep_counts,
'light_seconds': self.light_seconds,
'light_counts': self.light_counts,
'beep_light_counts': self.beep_light_counts,
'beep_light_seconds': self.beep_light_seconds,
'go_front': self.go_front,
'go_back': self.go_back,
'go_left': self.go_left,
'go_right': self.go_right,
'go_left_rotate': self.go_left_rotate,
'go_right_rotate': self.go_right_rotate,
'go_sleep': self.go_sleep
}
self.front_time = 0
self.back_time = 0
self.left_time = 0
self.right_time = 0
self.sum_rotate_angle = 0
self.abs_x = 0 # 为了和程序指令适配,其中 x y 方向互换
self.abs_y = 0
self.abs_w = 0
pass
def init(self):
logger.info("应急避险第二阶段初始化")
self.offset = 15
@@ -1303,7 +1330,6 @@ class move_area2():
self.delta_y = 0
self.delta_omage = 0
def find(self):
# time.sleep(0.001)
if var.skip_llm_task_flag:
return 5000
ret, box = filter.get(tlabel.SHELTER)
@@ -1312,44 +1338,138 @@ class move_area2():
if abs(error) < 20:
return 5000
return False
def sub_light(self, delay_time):
by_cmd.send_light(1)
time.sleep(delay_time)
by_cmd.send_light(0)
def sub_beep(self,delay_time):
def add_item(self, item):
try:
return self.action_dict[item.get('action')](item.get('time'))
except:
pass
return False
def beep_seconds(self, _time):
by_cmd.send_beep(1)
time.sleep(delay_time)
time.sleep(_time * 0.7)
by_cmd.send_beep(0)
def sub_move(self, x, y):
# FIXME 如果同時有 xy是否會造成 delay 不足
self.delta_x += x
self.delta_y += y
if x != 0:
delay_time = int(abs(x) * 500)
if x > 0:
by_cmd.send_distance_x(15, delay_time)
else:
by_cmd.send_distance_x(-15, delay_time)
elif y != 0:
delay_time = int(abs(y) * 500)
if y > 0: # 向左
by_cmd.send_distance_y(-15, delay_time)
else:
by_cmd.send_distance_y(15, delay_time)
time.sleep(delay_time / 500)
car_stop()
pass
def sub_turn(self, angle):
self.delta_omage += angle
delay_time = int(abs(angle) * 400 / 90)
if angle < 0:
# 左转
by_cmd.send_angle_omega(+55, delay_time)
return True
def beep_counts(self, _time):
for _ in range(_time):
by_cmd.send_beep(1)
time.sleep(0.3)
by_cmd.send_beep(0)
time.sleep(0.2)
return True
def light_seconds(self, _time):
by_cmd.send_light(1)
time.sleep(_time * 0.7)
by_cmd.send_light(0)
return True
def light_counts(self, _time):
for _ in range(_time):
by_cmd.send_light(1)
time.sleep(0.3)
by_cmd.send_light(0)
time.sleep(0.2)
return True
def beep_light_counts(self, _time):
for _ in range(_time):
by_cmd.send_beep(1)
by_cmd.send_light(1)
time.sleep(0.3)
by_cmd.send_beep(0)
by_cmd.send_light(0)
time.sleep(0.2)
return True
def beep_light_seconds(self, _time):
by_cmd.send_beep(1)
by_cmd.send_light(1)
time.sleep(_time * 0.3)
by_cmd.send_beep(0)
by_cmd.send_light(0)
return True
def go_front(self, _time):
self.abs_y -= math.sin(self.abs_w) * _time
self.abs_x += math.cos(self.abs_w) * _time
logger.info(f"向前移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]")
speed_time = int(abs(_time) * 750)
by_cmd.send_distance_x(10, speed_time)
time.sleep(speed_time / 100)
self.front_time += speed_time
return True
def go_back(self, _time):
self.abs_y += math.sin(self.abs_w) * _time
self.abs_x -= math.cos(self.abs_w) * _time
logger.info(f"向后移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]")
speed_time = int(abs(_time) * 750)
by_cmd.send_distance_x(-10, speed_time)
time.sleep(speed_time / 100)
self.back_time += speed_time
return True
def go_left(self, _time):
self.abs_y -= math.cos(self.abs_w) * _time
self.abs_x -= math.sin(self.abs_w) * _time
logger.info(f"向左移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]")
speed_time = int(abs(_time) * 750)
by_cmd.send_distance_y(-10, speed_time)
time.sleep(speed_time / 100)
self.left_time += speed_time
return True
def go_right(self, _time):
self.abs_y += math.cos(self.abs_w) * _time
self.abs_x += math.sin(self.abs_w) * _time
logger.info(f"向右移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]")
speed_time = int(abs(_time) * 750)
by_cmd.send_distance_y(10, speed_time)
time.sleep(speed_time / 100)
self.right_time += speed_time
return True
def go_shift(self, _dis_x, _dis_y):
direct_x = 1.0 if (_dis_x > 0) else -1.0
direct_y = 1.0 if (_dis_y > 0) else -1.0
self.abs_y -= math.sin(self.abs_w) * _dis_x
self.abs_x += math.cos(self.abs_w) * _dis_x
self.abs_y += math.cos(self.abs_w) * _dis_y
self.abs_x += math.sin(self.abs_w) * _dis_y
logger.info(f"水平移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]")
speed_time_x = int(abs(_dis_x) * 750)
speed_time_y = int(abs(_dis_y) * 750)
by_cmd.send_distance_x(10 * direct_x, speed_time_x)
by_cmd.send_distance_y(10 * direct_y, speed_time_y)
time.sleep(max(speed_time_x, speed_time_y) / 100) #FIXME 除以 100 是否正确
return True
def go_left_rotate(self, _time):
self.abs_w += math.radians(_time) # 弧度制
logger.info(f"向左旋转:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]")
self.sum_rotate_angle -= _time
speed_time = int(abs(_time) * 7.25)
by_cmd.send_angle_omega(30, speed_time)
time.sleep(speed_time / 200 + 0.5)
return True
def go_right_rotate(self, _time):
self.abs_w -= math.radians(_time) # 弧度制
logger.info(f"向右旋转:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]")
self.sum_rotate_angle += _time
speed_time = int(abs(_time) * 7.25)
by_cmd.send_angle_omega(-30, speed_time)
time.sleep(speed_time / 200 + 0.5)
return True
def go_sleep(self, _time):
time.sleep(_time*0.7)
return True
def reset(self):
logger.info(f"开始复位:[当前位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)}]")
# 归一化角度到 0-2pi
left_dregee = math.degrees(self.abs_w % (2 * math.pi))
# 确定旋转方向 (寻找回正角度最小旋转方向)
if math.sin(self.abs_w) < 0:
logger.info(f"需要左旋 {360.0 - left_dregee} 回正")
self.go_left_rotate(360.0 - left_dregee)
else:
# 右转
by_cmd.send_angle_omega(-55, delay_time)
time.sleep(delay_time / 300 * 1.5)
logger.info(f"需要右旋 {left_dregee} 回正")
self.go_right_rotate(left_dregee)
time.sleep(0.1)
# 在框中原点添加向左 0.6m 的偏移值,以便直接回到赛道
self.go_shift(self.abs_x * -1.0, self.abs_y * -1.0 - 0.6)
logger.info(f"回正后最终位置: ({self.abs_y:.2f}, {self.abs_x:.2f}), 角度: {math.degrees(self.abs_w % (2 * math.pi))}")
def exec(self):
var.task_speed = 0
if var.skip_llm_task_flag:
@@ -1357,8 +1477,9 @@ class move_area2():
return
logger.info("开始寻找停车区域")
car_stop()
calibrate_new(tlabel.SHELTER, offset = 15, run = True)
# calibrate_new(tlabel.SHELTER, offset = 15, run = True)
time.sleep(0.5)
var.llm_text = "黑暗环境,照亮三秒,左转 90 度,鸣叫三声"
# 调用大模型 然后执行动作
try:
resp = llm_bot.get_command_json(var.llm_text)
@@ -1372,57 +1493,19 @@ class move_area2():
resp_commands = eval(re.findall("```json(.*?)```", resp, re.S)[0])
if len(resp_commands) == 0:
return
action_list = resp_commands
# 进入停车区域
# by_cmd.send_speed_y(15)
by_cmd.send_distance_y(25, 180)
time.sleep(1)
# time.sleep(1.25)
car_stop()
logger.info(resp_commands)
for command in resp_commands:
logger.info(command)
if command['func'] == 'move':
self.sub_move(float(command['x']), float(command['y']))
elif command['func'] == 'light':
self.sub_light(int(command['time']))
elif command['func'] == 'beep':
self.sub_beep(int(command['time']))
elif command['func'] == 'turn':
self.sub_turn(int(command['angle']))
pass
else:
continue
time.sleep(0.5)
by_cmd.send_distance_y(10, 450)
time.sleep((450 * 5 / 1000) + 0.5)
except:
pass
time.sleep(1)
# 回到原位
delay_time = int(abs(self.delta_omage) * 400 / 90)
if int(abs(self.delta_omage)) == 360:
delay_time = 0
if self.delta_omage < 0:
# 左转
by_cmd.send_angle_omega(-55, delay_time)
else:
# 右转
by_cmd.send_angle_omega(55, delay_time)
time.sleep(delay_time / 300 * 1.5)
if self.delta_y > 0:
# 向左移动的距离就要比进入的时候少一些 因为 action 已经向左运动了
delay_time = 180 - (self.delta_y * 500)
else:
delay_time = 180 + (abs(self.delta_y) * 500)
# 离开停车区域
by_cmd.send_distance_y(-25, delay_time)
for action in action_list:
self.add_item(action)
time.sleep(0.1)
pass
time.sleep(0.5)
self.reset()
time.sleep(delay_time * 5e-3)
car_stop()
# FIXME 移动距离指令下发后未完成,再发送速度指令,将不会清除未完成的速度值
# by_cmd.send_distance_y(-15, 300)
pass
def nexec(self):
logger.warning("正在跳過大模型任務")
time.sleep(2)

241
test/test_action.py Normal file
View File

@@ -0,0 +1,241 @@
import os
import sys
import math
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
from by_cmd_py import by_cmd_py
import time
import zmq
import numpy as np
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect("tcp://localhost:6666")
def car_stop():
for _ in range(3):
cmd_py_obj.send_speed_x(0)
time.sleep(0.2)
cmd_py_obj.send_speed_y(0)
time.sleep(0.2)
cmd_py_obj.send_speed_omega(0)
class LLM_Action:
def __init__(self,cmd_py_obj):
self.by_cmd = cmd_py_obj
self.action_dict = {
'beep_seconds': self.beep_seconds,
'beep_counts': self.beep_counts,
'light_seconds': self.light_seconds,
'light_counts': self.light_counts,
'beep_light_counts': self.beep_light_counts,
'beep_light_seconds': self.beep_light_seconds,
'go_front': self.go_front,
'go_back': self.go_back,
'go_left': self.go_left,
'go_right': self.go_right,
'go_left_rotate': self.go_left_rotate,
'go_right_rotate': self.go_right_rotate,
'go_sleep': self.go_sleep
}
self.front_time = 0
self.back_time = 0
self.left_time = 0
self.right_time = 0
self.sum_rotate_angle = 0
self.abs_x = 0 # 为了和程序指令适配,其中 x y 方向互换
self.abs_y = 0
self.abs_w = 0
pass
def __call__(self, item):
try:
return self.action_dict[item.get('action')](item.get('time'))
except:
pass
return False
def beep_seconds(self, _time):
self.by_cmd.send_beep(1)
time.sleep(_time * 0.7)
self.by_cmd.send_beep(0)
return True
def beep_counts(self, _time):
for _ in range(_time):
self.by_cmd.send_beep(1)
time.sleep(0.3)
self.by_cmd.send_beep(0)
time.sleep(0.2)
return True
def light_seconds(self, _time):
self.by_cmd.send_light(1)
time.sleep(_time * 0.7)
self.by_cmd.send_light(0)
return True
def light_counts(self, _time):
for _ in range(_time):
self.by_cmd.send_light(1)
time.sleep(0.3)
self.by_cmd.send_light(0)
time.sleep(0.2)
return True
def beep_light_counts(self, _time):
for _ in range(_time):
self.by_cmd.send_beep(1)
self.by_cmd.send_light(1)
time.sleep(0.3)
self.by_cmd.send_beep(0)
self.by_cmd.send_light(0)
time.sleep(0.2)
return True
def beep_light_seconds(self, _time):
self.by_cmd.send_beep(1)
self.by_cmd.send_light(1)
time.sleep(_time * 0.3)
self.by_cmd.send_beep(0)
self.by_cmd.send_light(0)
return True
def go_front(self, _time):
self.abs_y -= math.sin(self.abs_w) * _time
self.abs_x += math.cos(self.abs_w) * _time
print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee")
speed_time = int(abs(_time) * 750)
self.by_cmd.send_distance_x(10, speed_time)
time.sleep(speed_time / 100)
self.front_time += speed_time
return True
def go_back(self, _time):
self.abs_y += math.sin(self.abs_w) * _time
self.abs_x -= math.cos(self.abs_w) * _time
print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee")
speed_time = int(abs(_time) * 750)
self.by_cmd.send_distance_x(-10, speed_time)
time.sleep(speed_time / 100)
self.back_time += speed_time
return True
def go_left(self, _time):
self.abs_y -= math.cos(self.abs_w) * _time
self.abs_x -= math.sin(self.abs_w) * _time
print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee")
speed_time = int(abs(_time) * 750)
self.by_cmd.send_distance_y(-10, speed_time)
time.sleep(speed_time / 100)
self.left_time += speed_time
return True
def go_right(self, _time):
self.abs_y += math.cos(self.abs_w) * _time
self.abs_x += math.sin(self.abs_w) * _time
print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee")
speed_time = int(abs(_time) * 750)
self.by_cmd.send_distance_y(10, speed_time)
time.sleep(speed_time / 100)
self.right_time += speed_time
return True
def go_shift(self, _dis_x, _dis_y):
direct_x = 1.0 if (_dis_x > 0) else -1.0
direct_y = 1.0 if (_dis_y > 0) else -1.0
self.abs_y -= math.sin(self.abs_w) * _dis_x
self.abs_x += math.cos(self.abs_w) * _dis_x
self.abs_y += math.cos(self.abs_w) * _dis_y
self.abs_x += math.sin(self.abs_w) * _dis_y
print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee")
speed_time_x = int(abs(_dis_x) * 750)
speed_time_y = int(abs(_dis_y) * 750)
self.by_cmd.send_distance_x(10 * direct_x, speed_time_x)
self.by_cmd.send_distance_y(10 * direct_y, speed_time_y)
time.sleep(max(speed_time_x, speed_time_y) / 100) #FIXME 除以 100 是否正确
return True
def go_left_rotate(self, _time):
self.abs_w += math.radians(_time) # 弧度制
print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee")
self.sum_rotate_angle -= _time
speed_time = int(abs(_time) * 7.25)
self.by_cmd.send_angle_omega(30, speed_time)
time.sleep(speed_time / 200 + 0.5)
# time.sleep(speed_time / _time / 2)
return True
def go_right_rotate(self, _time):
self.abs_w -= math.radians(_time) # 弧度制
print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee")
self.sum_rotate_angle += _time
speed_time = int(abs(_time) * 7.25)
self.by_cmd.send_angle_omega(-30, speed_time)
time.sleep(speed_time / 200 + 0.5)
# time.sleep(speed_time / _time / 2)
return True
def go_sleep(self, _time):
time.sleep(_time*0.7)
return True
def reset(self):
print(f"开始复位:[当前位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)}]")
# 先复位角度
if self.sum_rotate_angle > 0:
self.sum_rotate_angle = self.sum_rotate_angle % 360
else:
self.sum_rotate_angle = -(abs(self.sum_rotate_angle) % 360)
# if self.sum_rotate_angle > 0:
# # 采用左转回正
# self.go_left_rotate(self.sum_rotate_angle)
# # speed_time = int(abs(self.sum_rotate_angle) * 7.25)
# # self.by_cmd.send_angle_omega(30, speed_time)
# pass
# else:
# # 采用右转回正
# self.go_right_rotate(abs(self.sum_rotate_angle))
# # speed_time = int(abs(self.sum_rotate_angle) * 7.25)
# # self.by_cmd.send_angle_omega(-30, speed_time)
left_dregee = math.degrees(self.abs_w % (2 * math.pi)) #归一化角度到 0-2pi
if math.sin(self.abs_w) < 0:
print(f"需要左旋 {360.0 - left_dregee} 回正")
self.go_left_rotate(360.0 - left_dregee)
else:
print(f"需要右旋 {left_dregee} 回正")
self.go_right_rotate(left_dregee)
time.sleep(0.1)
self.go_shift(self.abs_x * -1.0, self.abs_y * -1.0 - 0.6) # 左移 0.6m 回到赛道
# # 再回正 x 轴
# if self.front_time > self.back_time:
# # 采用后退回正
# speed_time = self.front_time - self.back_time
# self.by_cmd.send_distance_x(-10, speed_time)
# else:
# speed_time = self.back_time - self.front_time
# self.by_cmd.send_distance_x(10, speed_time)
# time.sleep(speed_time / 100)
# time.sleep(0.1)
# # 最后回正 y 轴
# speed_time = self.left_time - self.right_time
# if speed_time < 0:
# speed_time = 4500 + abs(speed_time)
# else:
# speed_time = 4500 - speed_time
# self.by_cmd.send_distance_y(-10, speed_time / 15 + 100)
# print(speed_time * 1e-3 * 0.9)
# time.sleep(speed_time * 1e-3 * 0.9)
print(f"回正后最终位置: ({self.abs_y:.2f}, {self.abs_x:.2f}), 角度: {math.degrees(self.abs_w % (2 * math.pi))}")
if __name__ == "__main__":
cmd_py_obj = by_cmd_py()
# cmd_py_obj.send_angle_omega(-30, 20 * 7.25)
# time.sleep(20 * 7.25 / 20 / 2)
llm_act = LLM_Action(cmd_py_obj)
action_list = [{"index":0,"action":"go_left_rotate","time":270},{"index":1,"action":"go_back","time":0.2},{"index":2,"action":"go_left","time":0.2},{"index":2,"action":"beep_counts","time":3}]
cmd_py_obj.send_distance_y(10, 450)
time.sleep((450 * 5 / 1000) + 0.5)
# time.sleep(15 * 300 * 1e-3 * 0.7)
# car_stop()
for action in action_list:
llm_act(action)
time.sleep(0.1)
pass
time.sleep(1)
llm_act.reset()
# car_stop()

View File

@@ -13,18 +13,48 @@ class LLM:
def __init__(self):
self.model = 'ernie-3.5'
self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。
严格按照下面的描述生成给定格式 json从现在开始你仅仅给我返回 json 数据'''
self.prompt += '''正确的示例如下:
向左移 0.1m, 向左转弯 85 度 [{'func': 'move', 'x': 0, 'y': 0.1},{'func': 'turn','angle': -85}],
向右移 0.2m, 向前 0.1m [{'func': 'move', 'x': 0, 'y': -0.2},{'func': 'move', 'x': 0.1, 'y': 0}],
向右转 85 度,向右移 0.1m [{'func': 'turn','angle': 85},{'func': 'move', 'x': 0, 'y': -0.1}],
原地左转 38 度 [{'func': 'turn','angle': -38}],
蜂鸣器发声 5 秒 [{'func': 'beep', 'time': 5}]
发光或者照亮 5 秒 [{'func': 'light', 'time': 5}]
向右走 30cm照亮 2s [{'func': 'move', 'x': 0, 'y': -0.3}, {'func': 'light', 'time': 2}],
向左移 0.2m, 向后 0.1m [{'func': 'move', 'x': 0, 'y': 0.2},{'func': 'move', 'x': -0.1, 'y': 0}],
self.prompt = '''
你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
允许的动作及其对应格式如下:
- 向左移:{"index":N,"action":"go_left","time":T}
- 向右移{"index":N,"action":"go_right","time":T}
- 向前移:{"index":N,"action":"go_front","time":T}
- 向后移:{"index":N,"action":"go_back","time":T}
- 向左转:{"index":N,"action":"go_left_rotate","time":T}
- 向右转:{"index":N,"action":"go_right_rotate","time":T}
- 蜂鸣器发声:{"index":N,"action":"beep_seconds","time":T}
- 蜂鸣器发声次数:{"index":N,"action":"beep_counts","time":T}
- 发光或者照亮:{"index":N,"action":"light_seconds","time":T}
- 发光次数或者闪烁次数:{"index":N,"action":"light_counts","time":T}
- 发光并伴随蜂鸣器:{"index":N,"action":"beep_light_counts","time":T}
- 等待{"index":N,"action":"go_sleep","time":T}
示例输入输出如下:
输入:向左移 0.1m, 向左转弯 85 度
输出:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
输入:向右移 0.2m, 向前 0.1m
输出:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
输入:向右转 90 度,向右移 0.1m
输出:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
输入:原地左转 38 度
输出:[{"index":0,"action":"go_left_rotate","time":38}]
输入:蜂鸣器发声 5 秒
输出:[{"index":0,"action":"beep_seconds","time":5}]
输入:发光或者照亮 5 秒
输出:[{"index":0,"action":"light_seconds","time":5}]
输入:向右走 30cm, 照亮 2s
输出:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
输入:向左移 0.2m, 向后 0.1m
输出:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
输入:鸣叫 3 声
输出:[{"index":0,"action":"beep_counts","time":3}]
输入:前行零点五米
输出:[{"index":0,"action":"go_front","time":0.5}]
输入:闪烁灯光 1 次并伴有蜂鸣器
输出:[{"index":0,"action":"beep_light_counts","time": 1}]
输入:灯光闪烁 3 次同时蜂鸣器也叫 3 次
输出:[{"index":0,"action":"beep_light_counts","time": 3}]
'''
self.prompt += '''请根据上面的示例,解析该任务文本,并返回相应的 JSON 字段。确保 JSON 中包含了键 index action 和 time 以及相应的值'''
self.messages = []
self.resp = None
self.reset()

View File

@@ -381,21 +381,62 @@ class LLM:
erniebot.ak = "jReawMtWhPu0wrxN9Rp1MzZX"
erniebot.sk = "eowS1BqsNgD2i0C9xNnHUVOSNuAzVTh6"
self.model = 'ernie-3.5'
self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。
严格按照下面的描述生成给定格式 json从现在开始你仅仅给我返回 json 数据!'''
self.prompt += '''正确的示例如下:
向左移 0.1m, 向左转弯 85 度 [{'func': 'move', 'x': 0, 'y': 0.1},{'func': 'turn','angle': -85}],
向右移 0.2m, 向前 0.1m [{'func': 'move', 'x': 0, 'y': -0.2},{'func': 'move', 'x': 0.1, 'y': 0}],
向右转 85 度,向右移 0.1m [{'func': 'turn','angle': 85},{'func': 'move', 'x': 0, 'y': -0.1}],
原地左转 38 度 [{'func': 'turn','angle': -38}],
蜂鸣器发声 5 秒 [{'func': 'beep', 'time': 5}]
发光或者照亮 5 秒 [{'func': 'light', 'time': 5}]
向右走 30cm照亮 2s [{'func': 'move', 'x': 0, 'y': -0.3}, {'func': 'light', 'time': 2}],
向左移 0.2m, 向后 0.1m [{'func': 'move', 'x': 0, 'y': 0.2},{'func': 'move', 'x': -0.1, 'y': 0}],
鸣叫 3 声 [{'func': 'beep', 'time': 3}]
前行零点五米 [{'func': 'move', 'x': 0.5, 'y': 0}]
# self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。
# 严格按照下面的描述生成给定格式 json从现在开始你仅仅给我返回 json 数据!'''
# self.prompt += '''正确的示例如下:
# 向左移 0.1m, 向左转弯 85 度 [{'func': 'move', 'x': 0, 'y': 0.1},{'func': 'turn','angle': -85}],
# 向右移 0.2m, 向前 0.1m [{'func': 'move', 'x': 0, 'y': -0.2},{'func': 'move', 'x': 0.1, 'y': 0}],
# 向右转 85 度,向右移 0.1m [{'func': 'turn','angle': 85},{'func': 'move', 'x': 0, 'y': -0.1}],
# 原地左转 38 度 [{'func': 'turn','angle': -38}],
# 蜂鸣器发声 5 秒 [{'func': 'beep', 'time': 5}]
# 发光或者照亮 5 秒 [{'func': 'light', 'time': 5}]
# 向右走 30cm照亮 2s [{'func': 'move', 'x': 0, 'y': -0.3}, {'func': 'light', 'time': 2}],
# 向左移 0.2m, 向后 0.1m [{'func': 'move', 'x': 0, 'y': 0.2},{'func': 'move', 'x': -0.1, 'y': 0}],
# 鸣叫 3 声 [{'func': 'beep', 'time': 3}]
# 前行零点五米 [{'func': 'move', 'x': 0.5, 'y': 0}]
# '''
self.prompt = '''
你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
允许的动作及其对应格式如下:
- 向左移:{"index":N,"action":"go_left","time":T}
- 向右移:{"index":N,"action":"go_right","time":T}
- 向前移:{"index":N,"action":"go_front","time":T}
- 向后移:{"index":N,"action":"go_back","time":T}
- 向左转:{"index":N,"action":"go_left_rotate","time":T}
- 向右转:{"index":N,"action":"go_right_rotate","time":T}
- 蜂鸣器发声:{"index":N,"action":"beep_seconds","time":T}
- 蜂鸣器发声次数:{"index":N,"action":"beep_counts","time":T}
- 发光或者照亮:{"index":N,"action":"light_seconds","time":T}
- 发光次数或者闪烁次数:{"index":N,"action":"light_counts","time":T}
- 发光并伴随蜂鸣器:{"index":N,"action":"beep_light_counts","time":T}
- 等待{"index":N,"action":"go_sleep","time":T}
示例输入输出如下:
输入:向左移 0.1m, 向左转弯 85 度
输出:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
输入:向右移 0.2m, 向前 0.1m
输出:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
输入:向右转 90 度,向右移 0.1m
输出:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
输入:原地左转 38 度
输出:[{"index":0,"action":"go_left_rotate","time":38}]
输入:蜂鸣器发声 5 秒
输出:[{"index":0,"action":"beep_seconds","time":5}]
输入:发光或者照亮 5 秒
输出:[{"index":0,"action":"light_seconds","time":5}]
输入:向右走 30cm, 照亮 2s
输出:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
输入:向左移 0.2m, 向后 0.1m
输出:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
输入:鸣叫 3 声
输出:[{"index":0,"action":"beep_counts","time":3}]
输入:前行零点五米
输出:[{"index":0,"action":"go_front","time":0.5}]
输入:闪烁灯光 1 次并伴有蜂鸣器
输出:[{"index":0,"action":"beep_light_counts","time": 1}]
输入:灯光闪烁 3 次同时蜂鸣器也叫 3 次
输出:[{"index":0,"action":"beep_light_counts","time": 3}]
'''
self.prompt += '''你只需要根据我的示例解析出指令即可,不要给我其他多余的回复;再次强调 你无需给我其他多余的回复 这对我很重要'''
self.prompt += '''请根据上面的示例解析该任务文本,并返回相应的 JSON 字段。确保 JSON 中包含了键 index action 和 time 以及相应的值'''
self.messages = []
self.resp = None
worker = threading.Thread(target=self.reset, daemon=True)